Skip to main content
Log in

Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

To obtain the basic data for evaluating the critical level of ozone (O3) to protect Japanese deciduous broad-leaved forest tree species, the growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen (N) loads were investigated. The seedlings were grown in potted andisol supplied with N as NH4NO3 solution at 0, 20 or 50 kg ha−1 year−1 and were exposed to charcoal-filtered air or O3 at 1.0, 1.5 and 2.0 times the ambient concentration for two growing seasons. The interactive effect of O3 and N load on the whole-plant dry mass of the seedlings at the end of the second growing season was significant. The O3-induced reduction in the whole-plant dry mass of the seedlings was greater in the relatively high N treatment than that in the low N treatment. This interactive effect was mainly due to the difference in the degree of O3-induced reduction in net photosynthesis among the N treatments. The degree of O3-induced reduction in N availability to photosynthesis was greater in the relatively high N treatment than that in the low N treatment. In conclusion, the sensitivity of growth and photosynthetic parameters of F. crenata seedlings to O3 become high with increasing amounts of N added to the soil. Therefore, N deposition from the atmosphere should be taken into account to evaluate the critical level of O3 to protect Japanese deciduous broad-leaved forest tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in Northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • ADORC (Acid Deposition, Oxidant Research Center) (2006) Tropospheric ozone: a growing threat. ADORC (Acid Deposition and Oxidant Research Center), Niigata

    Google Scholar 

  • Aihara K, Aso T, Takeda M, Koshiji T (2004) Actual condition of forest decline and approach (II) The phenomena of forest decline at Tanzawa mountain in Kanagawa prefecture (in Japanese). J Jpn Soc Atmos Environ 39: A29–A39

    CAS  Google Scholar 

  • Bielenberg DG, Lynch JP, Pell EJ (2001) A decline in nitrogen availability affects plant responses to ozone. New Phytol 151:413–425

    Article  CAS  Google Scholar 

  • Bobbink R, Ashmore M, Braun S, Flückiger W, Van den Wyngaert IJJ (2003) Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In: Achermann B, Bobbink R (eds) Empirical critical loads for nitrogen, environmental documentation No. 164. Swiss Agency for the Environment, Forests and Landscape (SAFEL), Bern, pp 43–170

    Google Scholar 

  • Brown KA, Roberts TM (1988) Effects of ozone on foliar leaching in Norway spruce (Picea abies L. Karst): confounding factors due to NOx production during ozone generation. Environ Pollut 55:55–73

    Article  PubMed  CAS  Google Scholar 

  • Beyers JL, Riechers GH, Temple PJ (1992) Effects of long-term ozone exposure and drought on the photosynthetic capacity of Ponderosa pine (Pinus ponderosa Laws.). New phytol 122:81–90

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Godzik B, Grodzinska K, Fraczek W, Musselman R, Manning W, Badea O, Popescu F, Fleischer P (2004) Ambient ozone in forests of the central and eastern European mountains. Environ Pollut 130:5–16

    Article  PubMed  CAS  Google Scholar 

  • Chappelka AH, Samuelson LJ (1998) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol 139:91–108

    Article  CAS  Google Scholar 

  • Derwent R, Collins W, Johnson C, Stevenson D (2002) Global ozone concentrations and regional air quality. Environ Sci Tech 36:379–382

    Google Scholar 

  • Dyckmans J, Flessa H (2001) Influence of tree internal N status on uptake and translocation of C and N in beech: dual 13C and 15N labeling approach. Tree Physiol 21:395–401

    PubMed  CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, van Tienhoven AM, de Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BN (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Greitner CS, Pell EJ, Winner WE (1994) Analysis of aspen foliage exposed to multiple stresses: ozone, nitrogen deficiency and drought. New Phytol 127:579–589

    Article  CAS  Google Scholar 

  • Grulke NE, Paoletti E, Heath RL (2007) Comparison of calculated and measured foliar O3 flux in crop and forest species. Environ Pollut 146:640–647

    Article  PubMed  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. University Press, Cambridge

    Google Scholar 

  • Izuta T, Umemoto M, Horie K, Aoki M, Totsuka T (1996) Effects of ambient levels of ozone on growth, gas exchange rates and chlorophyll contents of Fagus crenata seedlings. J Jpn Soc Atmos Environ 31(2):95–105

    CAS  Google Scholar 

  • Izuta T, Nakaji T (2003) Effects of high nitrogen load and ozone on forest tree species. Eurasia J Res 6:155–170

    Google Scholar 

  • Izuta T, Tominaga K, Watanabe M, Matsumura H, Kohno Y (2005) Effects of nitrogen load on growth and leaf nutrient status of Japanese evergreen broad-leaved tree species. J Agric Meteorol 60:1125–1128

    Google Scholar 

  • Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Thiec DL, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2004) New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos Environ 38:2283–2294

    Article  CAS  Google Scholar 

  • Kohno Y, Matsumura H, Ishii T, Izuta T (2005) Establishing critical levels of air pollutants for protecting East Asian vegetation—a challenge. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Tokyo, pp 243–250

    Chapter  Google Scholar 

  • Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1997) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Landolt W, Gunthardt-Goerg MS, Pfenninger I, Einig W, Hampp R, Maurer S, Matyssek R (1997) Effect of fertilization on ozone-induced changes in the metabolism of birch (Betula pendula) leaves. New Phytol 137:389–397

    Article  CAS  Google Scholar 

  • Manter DK, Kavanagh KL, Rose CL (2005) Growth response of Douglas fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates. Tree Physiol 25:1015–1021

    PubMed  CAS  Google Scholar 

  • Maruta E, Shima K, Horie K, Aoki M, Dokiya Y, Izuta T, Totsuka T, Yokoi Y, Sakata T (1999) Forest decline of Fagus crenata at Mt Hinokiboramaru (Tannzawa, Kanagawa Prefecture, Japan) and acid deposition (in Japanese). Environ Sci (Japan) 12:241–250

    Google Scholar 

  • Matsumura H (2001) Impacts of ambient ozone and/or acid mist on the growth of the 14 tree species: an open-top chamber study conducted in Japan. Water Air Soil Pollut 130:959–964

    Article  Google Scholar 

  • Matsumura H, Kohno Y (1999) Impact of O3 and/or SO2 on the growth of young trees of 17 tree species: an open-top chamber study conducted in Japan. In: Fuhrer J, Achermann B (eds) Critical levels for ozone-level II, environmental documentation no. 115. Swiss Agency for Environment, Forest and Landscape (SAFEL), Bern, pp 187–192

    Google Scholar 

  • Matsumura H, Mikami C, Sakai Y, Murayama K, Izuta T, Yonekura T, Miwa M, Kohno Y (2005) Impacts of elevated O3 and/or CO2 on growth of Betula platyphylla, Betula ermanii, Fagus crenata, Pinus densiflora and Cryptomeria japonica seedlings. J Agric Meteorol 60(6):1121–1124

    Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany 64. Springer, Heidelberg, pp 349–404

    Google Scholar 

  • Mills G (2004) Mapping critical levels for vegetation. In: Spranger T (ed) Mapping manual 2004. UNECE Convention on long-range transboundary air pollution, pp III 19–21

  • Nakaji T, Fukami M, Dokiya Y, Izuta T (2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15:453–461

    CAS  Google Scholar 

  • Nakaji T, Takenaga S, Kuroha M, Izuta T (2002) Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. Environ Sci 9:269–282

    Google Scholar 

  • Nakaji T, Kobayashi T, Kuroha M, Omori K, Matsumoto Y, Yonekura T, Watanabe K, Utriainen J, Izuta T (2004) Growth and nitrogen availability of red pine seedlings under high nitrogen load and elevated ozone. Water Air Soil Pollut Focus 4:277–287

    Article  CAS  Google Scholar 

  • Nakaji T, Yonekura T, Kuroha M, Takenaga S, Izuta T (2005) Growth, annual ring structure and nutrient status of Japanese red pine and Japanese cedar seedlings after three years of excessive N load. Phyton 45:457–464

    CAS  Google Scholar 

  • Nakashizuka T, Iida S (1995) Composition, dynamics and disturbance regime of temperate deciduous forests in monsoon Asia. Vegetation 121:23–30

    Article  Google Scholar 

  • Network Center for EANET (2005) Data report on the acid deposition in the East Asian region 2004. Network Center for EANET, Niigata

    Google Scholar 

  • Nihlgård B (1985) The ammonium hypothesis: an additional explanation to the forest dieback in Europe. AMBIO 14:2–8

    Google Scholar 

  • Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Löw M, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506

    Article  PubMed  CAS  Google Scholar 

  • Okochi H, Igawa M (2001) Elevational patterns of acid deposition into a forest and nitrogen saturation on Mt Oyama, Japan. Water Air Soil Pollut 130:1091–1096

    Article  Google Scholar 

  • Pääkkönen E, Holopainen T (1995) Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytol 129:595–603

    Article  Google Scholar 

  • Pearson M, Mansfield TA (1993) Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.). New Phytol 123:351–358

    Article  CAS  Google Scholar 

  • Richter A, Burrows JP, Nüß H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132

    Article  PubMed  CAS  Google Scholar 

  • Schulze ED (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244:776–783

    Article  PubMed  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Ann Rev Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  • Takeda M, Aihara K (2007) Effects of ambient ozone concentrations on beech (Fagus crenanta) seedlings in the Tanzawa Mountains, Kanagawa Prefecture, Japan (in Japanese with English summary). J Jpn Soc Atmos Environ 42:107–117

    CAS  Google Scholar 

  • Tissue DT, Thomas RB, Strain BR (1993) Long-term effects of elevated CO2 and nutrients on photosynthesis and Rubisco in loblolly pine seedlings. Plant Cell Environ 16:859–865

    Article  CAS  Google Scholar 

  • Tjoelker MG, Luxmoore RJ (1991) Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. New Phytol 119:69–81

    Article  CAS  Google Scholar 

  • Tsuzuki T (1999) Ammonia nitrogen (NH4 +-N) (in Japanese). In: Hokkaido, affiliate of the Japan society for analytical chemistry (ed) Water analysis, 4th edition. Kagaku-Dojin, Kyoto, pp 253–256

  • Uddling J, Karlsson PE, Glorvigen A, Sellden G (2005) Ozone impairs autumnal resorption of nitrogen from birch (Betula pendula) leaves, causing an increase in whole-tree nitrogen loss through litter fall. Tree Physiol 26:113–120

    Article  Google Scholar 

  • Utriainen J, Holopainen T (2001a) Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Tree Physiol 21:1205–1213

    PubMed  CAS  Google Scholar 

  • Utriainen J, Holopainen T (2001b) Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings. Tree Physiol 21:447–456

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Watanabe M, Matsuo N, Naba J, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007) Effects of nitrogen supply on the sensitivity to O3 of growth and photosynthesis of Japanese beech (Fagus crenata) seedlings. Water Air Soil Pollut Focus 7:131–136

    Article  CAS  Google Scholar 

  • Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa J, Akimoto H (2006) Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: what controls surface ozone levels over Japan? Atmos Environ 40:1856–1868

    Article  CAS  Google Scholar 

  • Yonekura T, Dokiya Y, Fukami M, Izuta T (2001a) Effects of ozone and/or soil water stress on growth and photosynthesis of Fagus crenata seedlings. Water Air Soil Pollut 130:965–970

    Article  Google Scholar 

  • Yonekura T, Honda Y, Oksanen E, Yoshidome M, Watanabe M, Funada R, Koike T, Izuta T (2001b) The influences of ozone and soil water stress, singly and in combination, on leaf gas exchange rates, leaf ultrastructural characteristics and annual ring width of Fagus crenata seedlings. J Jpn Soc Atmos Environ 36:333–351

    CAS  Google Scholar 

  • Yonekura T, Yoshidome M, Watanabe M, Honda Y, Ogiwara I, Izuta T (2004) Carry-over effects of ozone and water stress on leaf phenological characteristics and bud frost hardiness of Fagus crenata seedlings. Trees 18:581–588

    Article  CAS  Google Scholar 

  • Watanabe M, Yamaguchi M, Tabe C, Iwasaki M, Yamashita R, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007) Influences of nitrogen load on the growth and photosynthetic responses of Quercus serrata seedlings to O3. Trees 21:421–432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the Ministry of the Environment, Japan (Global Environment Research Fund). The authors are greatly indebted to Prof. Motohiro Fukami of Utsunomiya University and Prof. Ryo Funada of Tokyo University of Agriculture and Technology for their invaluable advice. We thank Junichi Naba, Naoki Matsuo, Rie Yamashita, Yusuke Shinozaki and Masamori Tanaka for their technical support and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Izuta.

Additional information

Communicated by T. Grams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M., Watanabe, M., Iwasaki, M. et al. Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees 21, 707–718 (2007). https://doi.org/10.1007/s00468-007-0163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-007-0163-x

Keywords

Navigation