Skip to main content

Advertisement

Log in

Dependence of PEI and PAMAM Gene Delivery on Clathrin- and Caveolin-Dependent Trafficking Pathways

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Non-viral gene delivery vehicles such as polyethylenimine and polyamidoamine dendrimer effectively condense plasmid DNA, facilitate endocytosis, and deliver nucleic acid cargo to the nucleus in vitro. Better understanding of intracellular trafficking mechanisms involved in polymeric gene delivery is a prerequisite to clinical application. This study investigates the role of clathrin and caveolin endocytic pathways in cellular uptake and subsequent vector processing.

Methods

We formed 25-kD polyethylenimine (PEI) and generation 4 (G4) polyamidoamine (PAMAM) polyplexes at N/P 10 and evaluated internalization pathways and gene delivery in HeLa cells. Clathrin- and caveolin-dependent endocytosis inhibitors were used at varying concentrations to elucidate the roles of these important pathways.

Results

PEI and PAMAM polyplexes were internalized by both pathways. However, the amount of polyplex internalized poorly correlated with transgene expression. While the caveolin-dependent pathway generally led to effective gene delivery with both polymers, complete inhibition of the clathrin-dependent pathway was also deleterious to transfection with PEI polyplexes. Inhibition of one endocytic pathway may lead to an overall increase in uptake via unaffected pathways, suggesting the existence of compensatory endocytic mechanisms.

Conclusions

The well-studied clathrin- and caveolin-dependent endocytosis pathways are not necessarily independent, and perturbing one mechanism of trafficking influences the larger trafficking network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PEI:

Polyethylenimine

PAMAM:

Polyamidoamine

CTxB:

Cholera toxin subunit B

Tf:

Transferrin

DMEM:

Dulbecco’s modified Eagle’s medium

RLU:

Relative light units

MβCD:

Methyl-β-cyclodextrin

References

  1. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci. 1995;92:7297–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker Jr JR. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today. 2000;3:232–45.

    Article  CAS  PubMed  Google Scholar 

  3. Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR. Structure/Function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci. 2005;94:423–36.

    Article  CAS  PubMed  Google Scholar 

  4. Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71:445–62.

    Article  CAS  PubMed  Google Scholar 

  5. Son S, Kim WJ. Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery. Biomaterials. 2010;31:133–43.

    Article  CAS  PubMed  Google Scholar 

  6. Sonawane ND, Szoka FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem. 2003;278:44826–31.

    Article  CAS  PubMed  Google Scholar 

  7. Behr J-P. The Proton Sponge: a trick to enter cells the viruses did not exploit. Chimia (Aarau). 1997;2:34–6.

    Google Scholar 

  8. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Biochemistry. 2009;78:857–902.

    Article  CAS  Google Scholar 

  9. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic. 2002;3:311–20.

    Article  CAS  PubMed  Google Scholar 

  11. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8:185–94.

    Article  CAS  PubMed  Google Scholar 

  12. Van der Aa MAEM, Huth US, Häfele SY, Schubert R, Oosting RS, Mastrobattista E, et al. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res. 2007;24:1590–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468–74.

    Article  CAS  PubMed  Google Scholar 

  14. Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release. 2009;136:54–61. Elsevier B.V.

    Article  CAS  PubMed  Google Scholar 

  15. Reilly M, Larsen J, Sullivan M. Polyplexes traffic through caveolae to the Golgi and endoplasmic reticulum en route to the nucleus. Mol Pharm. 2012;9:1280–90.

    CAS  PubMed  Google Scholar 

  16. Qi R, Mullen DG, Baker JR, Holl MMB, Dendrimers DI, Polymers OD. The mechanism of polyplex internalization into cells: testing the GM1/caveolin-1 lipid raft mediated endocytosis pathway. Mol Pharm. 2010;1517–26

  17. Pack D, Putnam D, Langer R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol Bioeng. 2000;67:217–23.

    Article  CAS  PubMed  Google Scholar 

  18. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gabrielson NP, Pack DW. Acetylation of Polyethyleminimine enhances gene delivery via weakened polymer/DNA Interactions. Biomacromolecules. 2006;7:2427–35.

    Article  CAS  PubMed  Google Scholar 

  20. Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther Nat Publ Group. 2009;18:561–9.

    Article  Google Scholar 

  21. Hartmann L, Hafele S, Peschka-Suss R, Antonietti M, Borner HG. Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chemistry (Easton). 2008;14:2025–33.

    CAS  Google Scholar 

  22. Forrest ML, Pack DW. On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Mol Ther. 2002;6:57–66.

    Article  CAS  PubMed  Google Scholar 

  23. Forrest ML, Meister GE, Koerber JT, Pack DW. Partial Acetylation of Polyethylenimine enhances in vitro gene delivery. Pharm Res. 2004;21:365–71.

    Article  CAS  PubMed  Google Scholar 

  24. Phonphok Y, Rosenthal KS. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS. 1991;281:188–90.

    Article  CAS  Google Scholar 

  25. Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80:6964–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sofer A, Futerman A. Cationic amphiphilic drugs inhibit the internalization of cholera toxin to the golgi apparatus and the subsequent elevation of cyclic AMP. J Biol Chem. 1995;270:12117–22.

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol. 2008;440:15–33.

    Article  CAS  PubMed  Google Scholar 

  28. Shogomori H, Futerman AH. Cholesterol depletion by methyl-beta-cyclodextrin blocks cholera toxin transport from endosomes to the Golgi apparatus in hippocampal neurons. J Neurochem. 2001;78:991–9.

    Article  CAS  PubMed  Google Scholar 

  29. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE, et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci. 1999;96:6775–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999;10:961–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Aoki T, Nomura R, Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res. 1999;253:629–36.

    Article  CAS  PubMed  Google Scholar 

  32. Mukherjee S, Acharya BR, Bhattacharyya B, Chakrabarti G. Genistein arrests cell cycle progression of A549 cells at the G2/M Phase and depolymerizes interphase microtubules through binding to a unique site of tubulin. Biochemistry. 2010;49:1702–12.

    Article  CAS  PubMed  Google Scholar 

  33. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.

    Article  CAS  PubMed  Google Scholar 

  34. Ogris M, Steinlein P, Carotta S, Brunner S, Wagner E. DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS Pharm Sci. 2001;3:E21.

    Article  CAS  Google Scholar 

  35. Wagner E. Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic and precise. Acc Chem Res. 2012;45:1005–13.

    Article  CAS  PubMed  Google Scholar 

  36. McLendon PM, Fichter KM, Reineke TM. Poly(glycoamidoamine) vehicles Promote pDNA uptake through multiple routes and efficient gene expression via caveolae-mediated endocytosis. Mol Pharm. 2010;7:738–50.

    Article  CAS  PubMed  Google Scholar 

  37. Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 2007;8:603–12.

    Article  CAS  PubMed  Google Scholar 

  38. Singh RD, Puri V, Valiyaveettil JT, Marks DL, Bittman R, Pagano RE. Selective caveolin-1 – dependent endocytosis of glycosphingolipids. Mol Biol Cell. 2003;14:3254–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Damm E-M, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol. 2005;168:477–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Massol RH, Larsen JE, Fujinaga Y, Lencer WI, Kirchhausen T. Cholera toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways. Mol Biol Cell. 2004;15:3631–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Torgersen ML, Skretting G, Van Deurs B, Sandvig K. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci. 2001;114:3737–42.

    CAS  PubMed  Google Scholar 

  42. Gonçalves C, Mennesson E, Fuchs R, Gorvel J-P, Midoux P, Pichon C. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther. 2004;10:373–85.

    Article  PubMed  Google Scholar 

  43. Manunta M, Tan PH, Sagoo P, Kashefi K, George AJT. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res. 2004;32:2730–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Gersdorff V, K S, Nn V, R DS, Sc W, E, et al. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Gene Ther. 2006;14:745–53

  45. Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta. 2005;1745:273–86.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by National Institutes of Health grants GM085222 and DK083875 (to M.E.H.). We thank Sandy McMasters at the Cell Media Facility and Barbara Pilas at the Flow Cytometry facility at the University of Illinois. The authors have no competing financial interests relating to the work reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Pack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, M.E., Keswani, R.K. & Pack, D.W. Dependence of PEI and PAMAM Gene Delivery on Clathrin- and Caveolin-Dependent Trafficking Pathways. Pharm Res 32, 2051–2059 (2015). https://doi.org/10.1007/s11095-014-1598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1598-6

KEY WORDS

Navigation