Skip to main content
Log in

Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase

  • Special Issue
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this work was to investigate the mechanisms of cocrystal formation during cogrinding and storage of solid reactants, and to establish the effects of water by cogrinding with hydrated form of reactants and varying RH conditions during storage.

Methods

The hydrogen bonded 1:1 carbamazepine–saccharin cocrystal (CBZ–SAC) was used as a model compound. Cogrinding of solid reactants was studied under ambient and cryogenic conditions. The anhydrous, CBZ (III), and dihydrate forms of CBZ were studied. Coground samples were stored at room temperature at 0% and 75% RH. Samples were analyzed by XRPD, FTIR and DSC.

Results

Cocrystals prepared by cogrinding and during storage were similar to those prepared by solvent methods. The rate of cocrystallization was increased by cogrinding the hydrated form of CBZ and by increasing RH during storage. Cryogenic cogrinding led to higher levels of amorphization than room temperature cogrinding. The amorphous phase exhibited a T g around 41°C and transformed to cocrystal during storage.

Conclusions

Amorphous phases generated by pharmaceutical processes lead to cocrystal formation under conditions where there is increased molecular mobility and complementarity. Water, a potent plasticizer, enhances the rate of cocrystallization. This has powerful implications to control process induced transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. B. Aakeroy and D. J. Salmon. Building co-crystals with molecular sense and supramolecular sensibility. Cryst. Eng. Comm. 7:439–44668 (2005).

    Google Scholar 

  2. G. Bettinetti, M. Caira, A. Callegari, M. Merli, M. Sorrenti, and C. Tadini. Structure and solid-state chemistry of anhydrous and hydrated crystal forms of the trimethoprim–sulfamethoxypyridazine 1:1 molecular complex. J. Pharm. Sci. 89:478–488 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. M. R. Caira. Molecular complexes of sulfonamides. 2. 1/1 complexes between drug molecules — sulfadimidine acetylsalicylic acid and sulfadimidine-4-aminosalicylic acid. J. Crystallogr. Spectrosc. Res. 22:193–200 (1992).

    Article  CAS  Google Scholar 

  4. M. R. Caira, L. R. Nassimbeni, and A. F. Wildervanck. Selective formation of hydrogen bonded cocrystals between sulfonamide and aromatic carboxylic acids in the solid state. J. Chem. Soc., Perkin Trans. 2:2213–2216 (1995).

    Google Scholar 

  5. G. R. Desiraju. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35:565–573 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. M. C. Etter. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 95:4601–4610 (1991).

    Article  CAS  Google Scholar 

  7. M. C. Etter and G. M. Frankenbach. Hydrogen-bond directed cocrystallization as a tool for designing acentric organic solids. Chem. Mater. 1:10–12 (1989).

    Article  CAS  Google Scholar 

  8. M. C. Etter and S. M. Reutzel. Hydrogen-bond directed cocrystallization and molecular recognition properties of acyclic imides. J. Am. Chem. Soc. 113:2586–2598 (1991).

    Article  CAS  Google Scholar 

  9. M. C. Etter, S. M. Reutzel, and C. G. Choo. Self-organization of adenine and thymine in the solid state. J. Am. Chem. Soc. 115:4411–4412 (1993).

    Article  CAS  Google Scholar 

  10. M. C. Etter, Z. Urbanczyk-Lipkowska, M. Zia-Ebrahimi, and T. W. Panunto. Hydrogen bond directed cocrystallization and molecular recognition properties of diarylureas. J. Am. Chem. Soc. 112:8415–8426 (1990).

    Article  CAS  Google Scholar 

  11. A. Nangia and G. R. Desiraju. Supramolecular structures — reason and imagination. Acta Crystallogr. A54: 934–944 (1998).

    CAS  Google Scholar 

  12. B. Rodríguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodríguez-Hornedo. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 56:241–274 (2004).

    Article  PubMed  Google Scholar 

  13. N. Rodríguez-Hornedo, S. J. Nehm, and A. Jayasankar. Cocrystals: Design, Properties and Formation Mechanisms, Encyclopedia of Pharmaceutical Technology, 2006 (in press).

  14. B. Rodríguez-Spong. Enhancing the Pharmaceutical Behavior of Poorly Soluble Drugs Through the Formation of Cocrystals and Mesophases, Ph.D. Thesis, University of Michigan, 2005.

  15. B. Rodríguez-Spong, P. Zocharski, J. Billups, J. McMahon, M. J. Zaworotko, and N. Rodríguez-Hornedo. Enhancing the Pharmaceutical Behavior of Carbamazepine Through the Formation of Cocrystals. AAPS J. 5:Abstract M1298 (2003).

  16. A. V. Trask, W. D. S. Motherwell, and W. Jones. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst. Growth Des. 5:1013–1021 (2005).

    Article  CAS  Google Scholar 

  17. V. R. Pedireddi, W. Jones, A. P. Chorlton, and R. Docherty. Creation of crystalline supramolecular arrays: a comparison of co-crystal formation from solution and by solid state grinding. Chem. Commun. 8:987–988 (1996).

    Article  Google Scholar 

  18. A. V. Trask, W. D. S. Motherwell, and W. Jones. Solvent-Drop Grinding: Green Polymorph Control of Cocrystallisation. Chem. Commun. 7:890–891 (2004).

    Article  Google Scholar 

  19. S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 56:275–300 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. S. J. Nehm, N. Rodríguez-Hornedo, and B. Rodríguez-Spong. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 6:592–600 (2005).

    Article  Google Scholar 

  21. N. Rodríguez-Hornedo, S. J. Nehm, K. F. Seefeldt, Y. Pagan-Torres, and C. J. Falkiewicz. Reaction crystallization of pharmaceutical molecular complexes. Mol. Pharmacol. 3:362–367 (2006).

    Article  Google Scholar 

  22. M. C. Etter, G. M. Frankenbach, and D. A. Adsmond. Using hydrogen bonds to design acentric organic materials for nonlinear optical users. Mol. Cryst. Liq. Cryst. 187:25–39 (1990).

    CAS  Google Scholar 

  23. K. J. Crowley and G. Zografi. Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J. Pharm. Sci. 91:492–507 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. D. Murphy, F. Rodríguez-Cintron, B. Langevin, R. C. Kelly, and N. Rodríguez-Hornedo. Solution-mediated phase transformation of anhydrous to dihydrate carbamazepine and the effect of lattice disorder. Int. J. Pharm. 246:121–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. T. Oguchi, Y. Tozuka, T. Hanawa, M. Mizutani, N. Sasaki, S. Limmatvapirat, and K. Yamamoto. Elucidation of Solid-State Complexation in Ground Mixtures of Cholic Acid and Guest Compounds. Chem. Pharm. Bull. 50:887–891 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. T. Oguchi, K. Kazama, T. Fukami, E. Yonemochi, and K. Yamamoto. Specific complexation of ursodeoxycholic acid with guest compounds induced by co-grinding. II. Effect of grinding temperature on the mechanochemical complexation. Bull. Chem. Soc. Jpn. 76:515–521 (2003).

    Article  CAS  Google Scholar 

  27. M. Otsuka, T. Matsumoto, and N. Kaneniwa. Effect of environmental temperature on polymorphic solid-state transformation of indomethacin during grinding. Chem. Pharm. Bull. 34:1784–1793 (1986).

    PubMed  CAS  Google Scholar 

  28. M. Otsuka, T. Ofusa, and Y. Matsuda. Effect of environmental humidity on the transformation pathway of carbamazepine polymorphic modifications during grinding. Colloids Surf., B Biointerfaces 13:263–273 (1999).

    Article  CAS  Google Scholar 

  29. B. C. Hancock and G. Zografi. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 11:471–477 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. V. Andronis, M. Yoshioka, and G. Zografi. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 86:346–351 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. S. G. Fleischman, S. S. Kuduva, J. A. McMahon, B. Moulton, R. D. B. Walsh, N. Rodríguez-Hornedo, and M. J. Zaworotko. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des. 3:909–919 (2003).

    Article  CAS  Google Scholar 

  32. A. Jayasankar, A. Somwangthanaroj, B. Sirinutsomboon, Z. J. Shao, and N. Rodríguez-Hornedo. Cocrystal formation by solid-state grinding and during storage. AAPS J. 6:R6159 (2004).

    Google Scholar 

  33. K. Seefeldt, J. Miller, S. Ding, and N. Rodríguez-Hornedo. Crystallization of carbamazepine–nicotinamide cocrystal from the amorphous phase. AAPS J. 6:R6172 (2004).

    Google Scholar 

  34. F. E. M. O’Brien. The control of humidity using saturated salt solutions. J. Sci. Instrum. 25:73–76 (1948).

    Article  CAS  Google Scholar 

  35. A. Salari and R. E. Young. Application of attenuated total reflectance FTIR spectroscopy to the analysis of mixtures of pharmaceutical polymorphs. Int. J. Pharm. 163:157–166 (1998).

    Article  CAS  Google Scholar 

  36. A. D. Patel, P. E. Luner, and M. S. Kemper. Quantitative analysis of polymorphs in binary and multi-component powder mixtures by near-infrared reflectance spectroscopy. Int. J. Pharm. 206:63–74 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. R. Nair, N. Nyamweya, S. Gonen, L. J. Martinez-Miranda, and S. W. Hoag. Influence of various drugs on the glass transition temperature of poly(Vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int. J. Pharm. 225:83–96 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. N. B. Colthup, L. H. Daly, and S. E. Wiberley. Introduction to Infrared and Raman Spectroscopy. Harcourt Brace, Boston, 1990.

    Google Scholar 

  39. D. W. Mayo, F. A. Miller, and R. W. Hannah. Course Notes on the Interpretation of Infrared and Raman Spectra. Wiley, Hoboken, NJ, 2004.

    Google Scholar 

  40. Y. Hase. The infrared and Raman spectra of phthalimide, N–D-phthalimide and potassium phthalimide. J. Mol. Struct. 48:33–42 (1978).

    Article  CAS  Google Scholar 

  41. G. Jovanovski. Metal saccharinates and their complexes with N-donor ligands. CCACAA 73:843–868 (2000).

    CAS  Google Scholar 

  42. S. M. Teleb. Spectral and thermal studies of saccharinato complexes. J. Argent. Chem. Soc. 92:31–40 (2004).

    CAS  Google Scholar 

  43. G. Jovanovski, S. Tanceva, and B. Soptrajanov. The SO2 stretching vibrations in some metal saccharinates: spectra–structure correlations. Spectrosc. Lett. 28:1095–1109 (1995).

    CAS  Google Scholar 

  44. R. J. Behme and D. Brooke. Heat of fusion measurement of a low melting polymorph of carbamazepine that undergoes multiple-phase changes during differential scanning calorimetry analysis. J. Pharm. Sci. 80:986–990 (1991).

    PubMed  CAS  Google Scholar 

  45. B. Hancock, S. Shamblin, and G. Zografi. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 12:799–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  46. A. Trask and W. Jones. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top. Curr. Chem. 254:41–70 (2005).

    CAS  Google Scholar 

  47. H. A. Schneider. The Gordon–Taylor equation. Additivity and interaction in compatible polymer blends. Makromol. Chem. 189:1941–1955 (1988).

    Article  CAS  Google Scholar 

  48. P. Tong and G. Zografi. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J. Pharm. Sci. 90:1991–2004 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. L. S. Taylor and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. M. K. Gupta, A. Vanwert, and R. H. Bogner. Formation of physically stable amorphous drugs by milling with neusilin. J. Pharm. Sci. 92:536–551 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Bei Huang for technical assistance with XRPD and FTIR analysis. We gratefully acknowledge funding from Pfizer, Inc., Ann Arbor, MI, and from the Purdue/Michigan Consortium on the Physical and Chemical Stability of Pharmaceutical Solids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naír Rodríguez-Hornedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasankar, A., Somwangthanaroj, A., Shao, Z.J. et al. Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase. Pharm Res 23, 2381–2392 (2006). https://doi.org/10.1007/s11095-006-9110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9110-6

Key words

Navigation