Skip to main content

Advertisement

Log in

Surface-Engineered Nanoliposomes by Chelating Ligands for Modulating the Neurotoxicity Associated with β-Amyloid Aggregates of Alzheimer’s disease

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop chelating ligand-bound nanoliposomes (NLPs) for the prevention and reversal of β-Amyloid (Aβ) aggregation associated with promoting neurotoxicity in Alzheimer disease (AD).

Methods

Four different chelating ligands (CuAc, EDTA, histidine and ZnAc) were surface-engineered onto NLPs using either covalent or non-covalent conjugation. Successful conjugation of chelating ligands onto the surface of NLPs was confirmed by characterization studies: SEM, TEM and FTIR analysis. Chelation energetics of EDTA with Cu(II)/Zn(II)-Aβ(10-21) and nanoformation of emulsified polymers were computed and corroborated with experimental and analytical data using chemometric molecular modeling.

Results

The modified NLPs produced were spherical in shape, 127–178 nm in size, with polydispersity index from 0.217–0.920 and zeta potential range of −9.59 to −37.3 mV. Conjugation efficiencies were 30–76 %, which confirmed that chelating ligands were attached to the NLP surface.

Conclusions

In vitro and ex vivo results elucidated the effectiveness of chelating ligand-bound NLPs for prevention of CuAβ(1-42) or ZnAβ(1-42) aggregate buildup associated with neurotoxicity in PC12 neuronal cells, as well as promotion of intracellular uptake in the presence of Cu(II) or Zn(II) metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Cummings JH. Alzheimer’s disease. N Engl J Med. 2004;351:56–67.

    Article  PubMed  CAS  Google Scholar 

  2. Brookmeyer R, Evans DA, Hebert L, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s & Dementia. 2011;7:61–73.

    Article  Google Scholar 

  3. Iversen LL, Mortishire-Smith RJ, Pollack SL, et al. The toxicity in vitro of beta-amyloid protein. Biochem J. 1995;311(1):1–16.

    PubMed  CAS  Google Scholar 

  4. Marino T, Russo N, Toscano N, et al. On the metal ion (Zn(II), Cu (II)) coordination with beta-amyloid peptide: DFT computational study. Interdiscipl Sci. 2010;2:57–69.

    Article  CAS  Google Scholar 

  5. De Strooper B, Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci. 2000;113(11):1857–70.

    PubMed  Google Scholar 

  6. Small DH, Mok SS, Bornstein JC. Alzheimer’s disease and Aβ toxicity: from top to bottom. Nat Rev Neurosci. 2001;2(8):595–8.

    Article  PubMed  CAS  Google Scholar 

  7. Citron M. Beta-secretase as a target for the treatment of Alzheimer’s disease. J Neurosci Res. 2002;70:373–9.

    Article  PubMed  CAS  Google Scholar 

  8. De Felice FG, Vieira MN, Saraiva LM, et al. Targeting the neurotoxic species in Alzheimer’s disease: inhibitors of Aβ oligomerization. FASEB J. 2004;18:1366–72.

    Article  PubMed  Google Scholar 

  9. Lublin AL, Gandy S. Amyloid β oligemers: possible roles as key neurotoxicin in Alzheimer’s disease. Mt Sinai J Med. 2010;77(43):43–9.

    Article  PubMed  Google Scholar 

  10. Bush AI, Tanzi RE. Therapeutics for Alzheimers disease based on the metal hypothesis. Neurotherapeutics. 2008;5(3):421–32.

    Article  PubMed  CAS  Google Scholar 

  11. Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  12. Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochem J. 2003;42:2768–73.

    Article  CAS  Google Scholar 

  13. Duce JA, Bush AI. Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol. 2010;92:1–18.

    Article  PubMed  CAS  Google Scholar 

  14. Zatta P, Drago D, Bolognin S, et al. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci. 2009;30(7):346–55.

    Article  PubMed  CAS  Google Scholar 

  15. Opazo C. Transition metals and Alzheimer’s disease. Rev Esp Geriatr Gerontol. 2005;40(6):365–70.

    Article  Google Scholar 

  16. Bush AI. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging. 2002;23:1031–8.

    Article  PubMed  CAS  Google Scholar 

  17. Conway M, Holoman S, Jones L, et al. Selecting and using chelating agents. J Chem Eng. 1999;106(3):86–90.

    CAS  Google Scholar 

  18. Liu G, Men P, Kudo W, et al. Nanoparticle-chelator conjugates as inhibitors of Amyloid-β aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer Disease. Neurosci Lett. 2009;455(3):187–90.

    Article  PubMed  CAS  Google Scholar 

  19. Seely DMR, Wu P, Mills EJ. EDTA chelation therapy for cardiovascular disease: a systematic review. BMC Cardiovasc. 2005;5(32):1–6.

    Google Scholar 

  20. Nair NG, Perry G, Smith MA, et al. NMR studies of zinc, copper, and iron binding to histidine, the principal metal ion complexing site of amyloid-β peptide. J Alzheimer’s Dis. 2010;20(1):57–66.

    CAS  Google Scholar 

  21. Chikha GG, Li WM, Schutze-Redelmeier MP, et al. Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. Biochim Biophys Acta. 2002;1567(1–2):204–12.

    Google Scholar 

  22. Marcellini M, Di Ciommo V, Callea F, et al. Treatment of Wilson’s disease with zinc from the time of diagnosis in pediatric patients: a single-hospital, 10-year follow-up study. J Lab Clin Med. 2005;145(3):139–43.

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu N, Yamaguchi Y, Aoki T. Treatment and management of Wilson’s disease. Pediatr Int. 1999;4(4):419–22.

    Article  Google Scholar 

  24. Squitti R, Zito G. Anti-copper therapies in Alzheimer’s disease: new concepts. Recent Pat CNS Drug Discov. 2009;4:209–19.

    Article  PubMed  CAS  Google Scholar 

  25. Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm. 2006;314(2):120–6.

    Article  PubMed  CAS  Google Scholar 

  26. Cui Z, Lockman PR, Atwood CS, et al. Novel d-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005;59:263–72.

    Article  PubMed  CAS  Google Scholar 

  27. Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx. 2005;2:99–107.

    Article  PubMed  Google Scholar 

  28. Liu GP, Men P, Harris PL, et al. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406:189–93.

    Article  PubMed  CAS  Google Scholar 

  29. Atyabi F, Farkhondehfa A, Esmaeili F, et al. Preparation of pegylated nano-liposomal formulation containing SN-38: in vitro characterization and in vivo biodistribution in mice. Acta Pharm. 2009;59:133–44.

    Article  PubMed  CAS  Google Scholar 

  30. Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci. 2010;1184:154–72.

    Article  PubMed  CAS  Google Scholar 

  31. Kizelsztein P, Ovadia H, Garbuzenko O, et al. Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol. 2009;213:20–5.

    Article  PubMed  CAS  Google Scholar 

  32. Yigit MV, Mishra A, Tong R, et al. Inorganic mercury detection and controlled release of chelating agents from ion-responsive liposomes. Chem Biol. 2009;16:937–42.

    Article  PubMed  CAS  Google Scholar 

  33. Phachonpai W, Wattanathorn J, Muchimapura S, et al. Neuroprotective effect of quercetin encapsulated liposomes: a novel therapeutic strategy against Alzheimer’s disease. Am J Appl Sci. 2010;7(4):480–5.

    Article  CAS  Google Scholar 

  34. Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Contr Release. 2010;141:183–92.

    Article  CAS  Google Scholar 

  35. Kamidate T, Hashimoto Y, Tani H, et al. Uptake of transition metal ions using liposome containing dicetylphosphate as a ligand. Anal Sci. 2002;18:273–6.

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki R, Takizawa T, Negishi Y, et al. Gene delivery by combination of novel liposmal bubbles with perfluoropropane and ultrasound. J Contr Release. 2007;117:130–6.

    Article  CAS  Google Scholar 

  37. Zhua J, Xue J, Guo Z, et al. Vesicle size and stability of biomimetic liposomes from 3′-Sulfo-Lewis a (SuLea)-containing glycolipids. Colloids Surf B Biointerfaces. 2007;58(2):242–9.

    Article  Google Scholar 

  38. Verma DD, Verma S, Blume G, et al. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258:141–51.

    Article  PubMed  CAS  Google Scholar 

  39. Yagi N, Ogawa Y, Kodaka M, et al. Preparation of functional liposomes with peptide ligands and their binding to cell membranes. Lipids. 2000;35:673–9.

    Article  PubMed  CAS  Google Scholar 

  40. Janssen AP, Schiffelers RM, ten Hagen TL, et al. Peptide-targeted PEG-liposome in anti-angiogenic therapy. Int J Pharm Pharm Sci. 2003;254(1):55–8.

    Article  CAS  Google Scholar 

  41. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. PNAS. 1973;73:2424–8.

    Article  Google Scholar 

  42. Zhang LW, Yang J, Barron AR, et al. Endocytic mechanisms and toxicity of a functionalized fullerene in human cells. Toxicol Lett. 2009;191:149–57.

    Article  PubMed  CAS  Google Scholar 

  43. Kumar P, Pillay V, Choonara YE, et al. In silico theoretical molecular modeling for Alzheimer’s disease: the nicotine-curcumin paradigm in neuroprotection and neurotherapy. Int J Mol Sci. 2011;12:694–724.

    Article  PubMed  CAS  Google Scholar 

  44. Weers JG, Scheuing DR. Characterization of viscoelastic surfactant mixtures, I: fourier transform infrared spectroscopic studies. Colloids Surf B: Biointerfaces. 1991;1(55):41–56.

    Google Scholar 

  45. Strozyk D, Launer LJ, Adlard PA, et al. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiol Aging. 2009;30(7):1069–77.

    Article  PubMed  CAS  Google Scholar 

  46. Choonara YE, Pillay V, Ndesendo VMK, et al. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf B: Biointerfaces. 2011;87:243–54.

    Article  CAS  Google Scholar 

  47. Lozano MM, Longo ML. Microbubbles coated with disaturated lipids and DSPE-PEG2000: phase behavior, collapse transitions, and permeability. Langmuir. 2009;25:3705–12.

    Article  PubMed  CAS  Google Scholar 

  48. Morgan DM, Dong JJ, Jacob J, et al. Metal switch for amyloid formation: insight into the structure of the nucleus. J Am Chem Soc. 2002;124:12644–5.

    Article  PubMed  CAS  Google Scholar 

  49. Daxiong H, Haiyan W, Yang Y. Molecular modeling of zinc and copper binding with Alzheimer’s amyloid b-peptide. Biometals. 2008;21:189–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mufamadi, M.S., Choonara, Y.E., Kumar, P. et al. Surface-Engineered Nanoliposomes by Chelating Ligands for Modulating the Neurotoxicity Associated with β-Amyloid Aggregates of Alzheimer’s disease. Pharm Res 29, 3075–3089 (2012). https://doi.org/10.1007/s11095-012-0770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0770-0

Key words

Navigation