Skip to main content

Advertisement

Log in

On the metal ion (Zn2+, Cu2+) coordination with beta-amyloid peptide: DFT computational study

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

As is widely accepted, the crucial event of the progress of Alzheimer’s disease is the formation of extracellular neurotoxic amyloid plaques, consisting mainly of 40 or 42 amino acid residues, in the brain. Zinc and copper metal ions are involved in this process, since they enhance the amyloid beta aggregation and are incorporated into plaques. In this paper we have analyzed theoretically the energetics implied in the formation of some complexes of both cations, adopting a number of models that take into account various coordination environments. The aim was to determine which among the coordination patterns examined is the favoured one in order to give better insight in the controversy concerning the metal binding site of amyloid beta peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adlard, P.A., Bush, A.I. 2006. Metals and Alzheimer’s disease. J Alzheimers Dis 10, 145–163.

    PubMed  Google Scholar 

  2. Ali, F.E.A., Barnham, K.J., Barrow, C.J., Separovic, F. 2004. Metal-catalyzed oxidative damage and oligomerization of the amyloid-β peptide of Alzheimer’s disease. Aust J Chem 57, 511–518.

    Article  CAS  Google Scholar 

  3. Atwood, C.S., Moir, R.D., Huang, X., Scarpa, R.C., Bacarra, N.M., Romano, D.M., Hartshorn, M.A., Tanzi, R.E., Bush, A.I. 1998. Dramatic aggregation of Alzheimer beta by Cu (II) is induced by conditions representing physiological acidosis. J Biol Chem 273, 12817–12826.

    Article  PubMed  CAS  Google Scholar 

  4. Atwood, C.S., Scarpa,.R.C., Huang, X., Moir, R.D., Fairlie, W.D., Tanzi, D.P., Bush, A.I. 2000. Characterization of copper interactions with Alzheimer amyloid β peptides: Identification of an attomolar-affinity copper binding site on amyloid β1–42. J Neurochem 75, 1219–1233

    Article  PubMed  CAS  Google Scholar 

  5. Barnham, K.J., McKinstry, W.J., Multhaup, G., Galatis, D., Morton, C.J., Curtain, C.C., Williamson, N.A., White, A.R., Hinds, M.G., Norton, R.S., Beyreuther, K., Masters, C.L., Parker, M.W., Cappai, R. 2003. Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain A regulator of neuronal copper homeostasis. J Biol Chem 278, 17401–17407.

    Article  PubMed  CAS  Google Scholar 

  6. Barrow, C.J., Zagorski, M.G. 1991. Solution structures of β-peptide and its constituent fragments relation to amyloid deposition. Science 253, 179–182.

    Article  PubMed  CAS  Google Scholar 

  7. Becke, A.D. 1993. Density-functional thermochemistry III. The role of exact exchange. Chem Phys 98, 5648–5652.

    CAS  Google Scholar 

  8. Bellingham, S.A., Ciccotosto, G.D., Needham, B.E., Fodero, L.R., White, A.R., Masters, C.L., Cappai, R., Camakaris, J. 2004a. Gene knockout of amyloid precursor protein and amyloid precursor -like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J Neurochem 91, 423–428.

    Article  PubMed  CAS  Google Scholar 

  9. Bellingham, S.A., Lahiri, D.K., Maloney, B., La Fontaine, S., Multhaup, G., Camakaris, J. 2004b. Copper depletion down-regulates expression on the Alzheimer’s disease amyloid-beta precursor protein gene. J Biol Chem 279, 20378–20386.

    Article  PubMed  CAS  Google Scholar 

  10. Bush, A.I. 2000. Metals and neuroscience. Curr Opin Chem Biol 4, 184–191.

    Article  PubMed  CAS  Google Scholar 

  11. Bush, A.I., Pettingeell, W.H., Multhaup, G., Paradis, M.D., Vonsattel J.P., Gusella, J.F., Beyreuther, K., Masters, C.L., Tanzi, R.E. 1994. Rapid induction of Alzheimer. A beta amyloid formation zinc. Science 265, 1464–1467.

    CAS  Google Scholar 

  12. Bush, A.I., Tanzi, R.E. 2002. The galvanization of β-amyloid in Alzheimer’s disease. Proc Natl Acad SciUSA 99, 7317–7319.

    Article  CAS  Google Scholar 

  13. Chen, S.-L., Marino, T., Fang, W.-H., Russo, N., Himo, F. 2008. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from aeromonas proteolytica; A density functional theory Study. J Phys Chem B 112, 2494–2500.

    Article  PubMed  CAS  Google Scholar 

  14. Choo, L.P., Wetzel, D.L., Halliday, W.C., Jackson, M., LeVine, S.M., Mantsch, H.H. 1996. In situ characterization of beta-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71, 1672–1679.

    Article  PubMed  CAS  Google Scholar 

  15. Coles, M., Bicknell, W., Watson, A.A., Fairlie, D.P., Craik, D. 1998. Solution structure of amyloid β-Peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37, 11064–11077.

    Article  PubMed  CAS  Google Scholar 

  16. Danielsson, J., Andersson, A., Jarvet, J., Graslund, A. 2006a. 15N relaxation study of the amyloid β-peptide: structural propensities and persistence length. Magn Res Chem 44, S114–S121.

    Article  CAS  Google Scholar 

  17. Danielsson, J., Jarvet, J., Damberg, P., Graslund, A. 2005. The Alzheimer β-peptide shows temperaturedependent transitions between left-handed 31-helix, β-strand and random coil secondary structures. FEBS J 272, 3938–3949

    Article  PubMed  CAS  Google Scholar 

  18. Danielsson, J., Pierattelli, R., Banci, L., Graslund, A. 2006b. High-resolution NMR studies of the zincbinding site of the Alzheimer’s amyloid β-peptide. FEBS J 274, 46–59.

    Article  CAS  Google Scholar 

  19. Dolg, M., Wedig, U., Stoll, H., Preuss, H. 1987. Energy-adjusted ab initio pseudopotentials for the firts row transition elements. J Chem Phys 86, 866–872.

    Article  CAS  Google Scholar 

  20. Dong, J., Atwood, C.S., Anderson, V.E., Siedlak, S.L., Smith, M.A., Perry, G., Carey, P.R. 2003. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42, 2768–2773.

    Article  PubMed  CAS  Google Scholar 

  21. Drew, S.C., Noble, C.J., Masters, C.L., Hanson G.R., Barnham K.J. 2009. Pleomorphic copper coordination by Alzheimer’s disease amyloid-β peptide. J Am Chem Soc 131, 1195–1207.

    Article  PubMed  CAS  Google Scholar 

  22. Finefrock, A.E., Bush, A.I., Doraiswamy, P.M. 2003. Current status of metals as therapeutic targets in Alzheimer’s disease. J Am Geriatr Soc 51, 1143–1148.

    Article  PubMed  Google Scholar 

  23. Gaggelli, E., Grzonka, Z., Kozlowski, H., Migliorini, C., Molteni, E., Valensin, D., Valensin, G. 2008. Structural features of the Cu(II) complex with the rat Aβ(1–28) fragment. Chem Commun 341–343.

  24. Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G. 2006. Copper Homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis. Chem Rev 106, 1995–2044.

    Article  PubMed  CAS  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W, Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A. 2004. Gaussian 03, Revision C02. Gaussian, Inc, Wallingford CT.

    Google Scholar 

  26. Gomez-Balderas, R., Raffa, D.F., Rickard, G.A., Brunelle, P., Rauk, A. 2005. Computational studies of Cu(II)/Met and Cu(I)/Met binding motifs relevant for the chemistry of Alzheimer’s disease. J Phys Chem A 109, 5498–5508.

    Article  PubMed  CAS  Google Scholar 

  27. Guilloreau, L., Damian, L., Coppel, Y., Mazarguil, H., Winterhalter, M., Faller, P. 2006. Structural and thermodynamical properties of CuII amyloid-β16/28 complexes associated. J Biol Inorg Chem 11, 1024–1038.

    Article  PubMed  CAS  Google Scholar 

  28. Hardy, J., Selkoe, D.J. 2002. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  29. Holm, R.H., Kennepohl, P., Solomon, E.I. 1996. Structural and functional aspects of metal sites in biology. Chem Rev 96, 2239–2314.

    Article  PubMed  CAS  Google Scholar 

  30. Hou, L., Zagorski, M.G. 2006. NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer’s disease. J Am Chem Soc 128, 9260–9261.

    Article  PubMed  CAS  Google Scholar 

  31. House, E., Collingwood, J., Khan, A., Korchazkina, O., Berthon, G., Exley, C. 2006. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimer’s Dis 6, 291–301.

    Google Scholar 

  32. Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E., Bush, A.I. 1999a. The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616.

    Article  PubMed  CAS  Google Scholar 

  33. Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Vonsattel, J.P., Tanzi, R.E., Bush, A.I. 1977. Zinc-induced Alzheimer’s Aβ1–40 aggregation is mediated by conformational factors. J Biol Chem 272, 26464–26470.

    Article  Google Scholar 

  34. Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D.A., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Saunders, A.J., Lim, J., Moir, R.D., Glabe, C., Bowden, E.F., Masters, C.L., Fairlie, D.P., Tanzi, R.E. 1999b. Cu(II) potentiation of Alzheimer Aβ neurotoxicity: Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274, 37111–37116.

    Article  PubMed  CAS  Google Scholar 

  35. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., Ihara, Y. 1994. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 13, 45–53.

    Article  PubMed  CAS  Google Scholar 

  36. Karr, J.W., Szalai, V.A. 2007. Role of aspartate-1 in Cu(II) binding to the amyloid-β peptide of Alzheimer’s disease. J Am Chem Soc 129, 3796–3797.

    Article  PubMed  CAS  Google Scholar 

  37. Karr, J.W., Akintoye, H., Kaupp, L.J., Szalai, V.A. 2005. Amyloid-beta binds Cu2+ in a mononuclear metal ion binding site. Biochemistry 44, 5478–5487.

    Article  PubMed  CAS  Google Scholar 

  38. Karr, J.W., Kaupp, L.J., Szalai, V.A. 2004. Amyloid-β binds copper(II) in a mononuclear metal ion binding site. J Am Chem Soc 126, 13534–13538.

    Article  PubMed  CAS  Google Scholar 

  39. Kowalik-Jankowska, T., Ruta, M., Wisniewska, K., Lankiewicz, L. 2003. Coordination abilities of the 1–16 and 1–28 fragments of beta-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study. J Inorg Biochem 95, 270–282.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, C.T., Yang, W.T., Parr, R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37, 785–789.

    Article  CAS  Google Scholar 

  41. Lee, J.P., Stimson, E.R., Ghilardi, J.R., Mantyth, P.W., Lu, Y.A., Felix, A.M., Llanos, W., Behbin, A., Cummings, M., Van Criekinge, M., Timms, W., Maggio, J.E. 1995. 1H NMR of Aβ amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry 34, 5191–5200.

    Article  PubMed  CAS  Google Scholar 

  42. Leopoldini, T., Marino, N., Toscano, M. 2008. Theoretical investigation of the catalytic mechanism of the Protein arginine deiminase 4 enzyme. Theor Chem Acc 120, 459–466.

    Article  CAS  Google Scholar 

  43. Ma, Q.-F., Hu, J., Wu, W.-H., Liu, H.-D., Du, J.-T., Fu, Y., Wu, Y.-W., Lei, P., Zhao, Y.-F., Li, Y.-M. 2006. Characterization of copper binding to the peptide amyloid-β(1–16) associated with Alzheimer’s disease. Biopolymers 83, 20–31.

    Article  PubMed  CAS  Google Scholar 

  44. Malinchik, S.B., Inouye, H., Szumowski, K.E., Kirschner, D.A. 1998. Structural analysis of Alzheimer’s β(l–40) amyloid: protofilament assembly of tubular fibrils. Biophys J 74, 537–545.

    Article  PubMed  CAS  Google Scholar 

  45. Mantri, Y., Fioroni, M., Baik, M.-H. 2007. Computational study of the binding of CuII to Alzheimer’s amyloid-β peptide: do Aβ42 and Aβ40 bind copper in identical fashion? J Biol Inorg Chem 13, 1197–120

    Article  CAS  Google Scholar 

  46. Marcinowski, K.J., Shao, H., Clancy, E.L., Zagorski, M.G. 1998. Solution structure model of residues 1–28 of the amyloid β-peptide when bound to micelles. J Am Chem Soc 120, 11082–11091.

    Article  CAS  Google Scholar 

  47. Marino T., Russo N., Toscano, M. 2005. A comparative study of the catalytic mechanisms of the zinc and cadmium containing carbonic anhydrase. J Am Chem Soc 127, 4242–4253.

    Article  PubMed  CAS  Google Scholar 

  48. Marino, T., Russo, N., Toscano, M. 2007. On the copper( II) ion coordination by prion protein HGGGW pentapeptide model. J Phys Chem B 111, 635–640.

    Article  PubMed  CAS  Google Scholar 

  49. Matsubara, T., Hiura, Y., Kawakito, O., Yasuzawa, M., Kawashiro, K. 2003. Selection of novel structural zinc sites from a random peptide library. FEBS Lett 555, 317–321.

    Article  PubMed  CAS  Google Scholar 

  50. Maynard, C.J., Bush, A.I., Masters, C.L., Cappai, R., Li, Q.X. 2005. Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86, 147–159.

    Article  PubMed  CAS  Google Scholar 

  51. Minicozzi, V., Stellato, F., Comai, M., Dalla Serra, M., Potrich, C., Meyer-Klaucke, W., Morante, S. 2008. Identifying the minimal copper- and zinc-binding site sequence in amyloid-β peptides. J Biol Chem 283, 10784–10792.

    Article  PubMed  CAS  Google Scholar 

  52. Miura, T., Suzuki, K., Kohata, N., Takeuchi, H. 2000. Metal binding models of Alzheimer’s amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemistry 39, 7024–7031.

    Article  PubMed  CAS  Google Scholar 

  53. Noodleman, L., Lovell, T., Han, W.G., Li, J., Himo, F. 2004. Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 104, 459–508.

    Article  PubMed  CAS  Google Scholar 

  54. Ohsawa, I., Takamura, C., Kohsaka, S. 1997. The amino-terminal region of amyloid precursor protein is responsible for neurite outgrowth in rat neocortical explants culture. Biochem Biophys Res Commun 236, 59–65.

    Article  PubMed  CAS  Google Scholar 

  55. Pavelka, M., Shukla, M.K., Leszczynski, J., Burda, J.V. 2008. Theoretical study of hydrated copper(II) interactions with guanine: a computational density functional theory study. J Phys Chem A 11, 256–267.

    Article  CAS  Google Scholar 

  56. Phinney, A.L., Drisaldi, B., Schmidt, S.D., Lugowski, S., Coronado, V., Liang, Y., Horne, P., Yang, J., Sekoulidis, J., Coomaraswamy, J., Chishti, M.A., Cox, D.W., Mathews, P.M., Nixon, R.A., Carlson, G.A., St George-Hyslop, P., Westaway, D. 2003. In vivo reduction of amyloid-“beta” by a mutant copper transporter. Proc Natl Acad Sci USA 100, 14193–14198.

    Article  PubMed  CAS  Google Scholar 

  57. Raffa, D.F., Rickard, G.A., Rauk, A. 2007. Ab initio modeling of the structure and redox behavior of copper(I) bound to a His-His model peptide. Relevance to the b-amyloid peptide of Alzheimer’s disease. J Biol Inorg Chem 12, 147–164.

    Article  PubMed  CAS  Google Scholar 

  58. Raffa, D.F., Gomez-Balderas, R., Brunelle, P., Rickard, G.A., Rauk, A. 2005. Ab initio model studies of copper binding to peptides containing a His-His sequence: relevance to the b-amyloid peptide of Alzheimer’s disease. J Biol InorgChem 10, 887–902.

    Article  CAS  Google Scholar 

  59. Raffa, D.F., Rauk, A. 2007. Molecular dynamics study of the beta amyloid peptide of Alzheimer’s disease and its divalent copper complexes. J Phys Chem B 111, 3789–3799.

    Article  PubMed  CAS  Google Scholar 

  60. Ramos, M.J., Fernandes, P.A. 2008. Computational Enzymatic Catalysis. Acc Chem Res 41, 689–698.

    Article  CAS  Google Scholar 

  61. Rauk, A. 2008. Why is the amyloid beta peptide of Alzheimer’s disease neurotoxic? Dalton Trans, 1273–1282.

  62. Rickard, G.A., Gomez-Balderas, R., Brunelle, P., Raffa, D.F. Rauk, A. 2005. Binding affinities for models of biologically available potential Cu(II) ligands relevant to Alzheimer’s disease. An ab initio study. J Phys Chem A 109, 8361–8370.

    CAS  Google Scholar 

  63. Riek, R., Guntert, P., Dobeli, H., Wipf, B., Wuthrich, K. 2001. NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, Aβ (1–40)ox and Aβ(1–42). Eur J Biochem 268, 5930–5936

    Article  PubMed  CAS  Google Scholar 

  64. Rossjohn, J., Cappai, R., Feil, S.C., Henry, A., Mckinstry, W.J., Galatis, D., Hesse, L., Multhaup, G., Beyreuther, K., Masters, C.L., and Parker, M.W. 1999. Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nature Struct Biol 6, 327–331.

    Article  PubMed  CAS  Google Scholar 

  65. Rulíšek, L., Havlas, Z. 2000. Theoretical studies of metal ion selectivity. 1. DFT calculations of interaction energies of amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). J Am Chem Soc 122, 10428–10439

    Article  CAS  Google Scholar 

  66. Rulíšek, L., Vondrasek, J. 1998. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J Inorg Biochem 71. 115–127

    Article  PubMed  Google Scholar 

  67. Ryu, J., Girigoswami, K., Ha, C., Ku, S.H., Park, C.B. 2008. Influence of multiple metal ions on b-amyloid aggregation and dissociation on a solid surface. Biochemistry 47, 5328–5335.

    Article  PubMed  CAS  Google Scholar 

  68. Sangmi, J., Sunil, S. 2007. The aggregated state of amyloid-β peptide in vitro depends on Cu2+ ion concentration. Angew Chem Int Ed 46, 3959–3961.

    Article  Google Scholar 

  69. Selkoe, D.J. 2001. Alzheimer’s disease: genes, proteins and therapy. Physiol Rev 81, 741–766.

    PubMed  CAS  Google Scholar 

  70. Selkoe, D.J. 2002. Alzheimer’s disease is a synaptic failure. Science 298, 789–791.

    Article  PubMed  CAS  Google Scholar 

  71. Serpell, L.C., Fraser, P.E., Sunde, M. 1999. X-Ray fiber diffraction of amyloid fibrils. Methods Enzymol 309, 526–536.

    Article  PubMed  CAS  Google Scholar 

  72. Shao, H., Jao, S., Ma, K., Zagorski, M.G. 2000. Solution structures of micelle-bound amyloid β-(1–40) and β-(1–42) peptides of Alzheimer’s disease. J Mol Biol 285, 755–773

    Article  Google Scholar 

  73. Shoji, M., Golde, T.E., Ghiso, J., Cheung, T.T., Estus, S., Shaffer, L.M., Cai, X.D., McKay, D.M., Tintner, R., Frangione, B., Younkin, S.G. 1992. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258, 126–129.

    Article  PubMed  CAS  Google Scholar 

  74. Stellato, F., Menestrina, G., Dalla Serra, M., Potrich, C., Tomazzolli, R., Meyer-Klauche, W., Morante, S. 2006. Metal binding in amyloid β-peptides shows intra and inter-peptide coordination modes. Eur Biophys J 35, 340–351.

    Article  PubMed  CAS  Google Scholar 

  75. Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R.W., Rosch, P. 1995. Structure of amyloid A4-(1–40)-peptide of Alzheimer’s disease. Eur J Biochem 233, 293–298.

    Article  PubMed  CAS  Google Scholar 

  76. Stretsolv, V.A., Titmuss, S.J., Epa, V.C., Barnham, K.J., Masters, C.L., Varghese, J.N. 2008. The structure of the Amyloid-b peptide high-affinity copper II binding site in Alzheimer disease. Biophys J 95, 3447–3456.

    Article  CAS  Google Scholar 

  77. Syme, C.D., Nadal, R.C., Rigby, S.E.J., Viles, J.H. 2004. Copper binding to the amyloid-β (Ab) peptide associated with Alzheimer’s disease. J Biol Chem 279, 8169–8177.

    Article  CAS  Google Scholar 

  78. Syme, C.D., Viles, J.H. 2006. Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Aβ) of Alzheimer’s disease. Biochimica et Biophysica Acta 1764, 246–256.

    PubMed  CAS  Google Scholar 

  79. Talafous, J., Marcinowski, K.J., Klopman, G., Zagorski, M.G. 1994. Solution structure of residues 1–28 of the amyloid beta-peptide. Biochemistry 33, 7788–7796.

    Article  PubMed  CAS  Google Scholar 

  80. Tickler, A.K., Smith, D.G., Ciccotosto, G.D., Tew, D.J., Curtain, C.C., Cappai, R., Wade, J.D., Barnham, K. 2005. Methylation of the imidazole side chains of the Alzheimer disease amyloid-beta peptide results in abolition of superoxide dismutaselike structures and inhibition of neurotoxicity. J Biol Chem 280, 13355–13363.

    Article  PubMed  CAS  Google Scholar 

  81. Varadarajan, S., Yatin, S., Aksenova, M., Butterfield, D.A. 2000. Review: Alzheimer’s amyloid β-peptide associated free radical oxidative stress and neurotoxicity. J Struct Biol 130, 184–208.

    Article  PubMed  CAS  Google Scholar 

  82. Vigo-Pelfrey, C.L.D., Keim, P., Lieberburg, I., Schenk, D.B. 1993. Rapid communication: characterization of β-amyloid peptide from human cerebrospinal fluid. J Neurochem 61, 1965–1968.

    Article  PubMed  CAS  Google Scholar 

  83. Yang, D.S., McLaurin, J., Qin, K., Westaway, D., Fraser, P.E. 2000. Examining the zinc binding site of the amyloid-β peptide. Eur J Biochem 267, 6692–6698.

    Article  PubMed  CAS  Google Scholar 

  84. Zagorski, M.G., Barrow, C.J. 1992. NMR studies of amyloid. beta.-peptides: proton assignments, secondary structure, and mechanism of an α-Helix → β-Sheet conversion for a homologous, 28-residue, Nterminal fragment. Biochemistry 31, 5621–5631

    Article  PubMed  CAS  Google Scholar 

  85. Zhang, S., Iwata, K., Lachenmann, M.J., Peng, J.W., Li, S., Stimson, E.R., Lu, Y., Felix, A.M., Maggio, J.E., Lee, J.P. 2000. The Alzheimer’s peptide Aβ adopts a collapsed coil structure in water. J Struct Biol 130, 130–141.

    Article  PubMed  CAS  Google Scholar 

  86. Zirah, S., Kozin, S.A., Mazur, A.K., Blond, A., Cheminant, M., Segalas-Milazzo, I., Debey, P., Rebuffat, S. 2006. Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J Biol Chem 281, 2151–2161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, T., Russo, N., Toscano, M. et al. On the metal ion (Zn2+, Cu2+) coordination with beta-amyloid peptide: DFT computational study. Interdiscip Sci Comput Life Sci 2, 57–69 (2010). https://doi.org/10.1007/s12539-010-0086-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-010-0086-x

Key words

Navigation