Skip to main content

Advertisement

Log in

Rectal Absorption of Vigabatrin, a Substrate of the Proton Coupled Amino Acid Transporter (PAT1, Slc36a1), in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the rectal absorption of vigabatrin in rats, based on the hypothesis that PAT1 (Slc36a1) is involved.

Methods

Male Sprague–Dawley rats were dosed rectally with five different gels, varying in buffer capacity, the amount of vigabatrin, and co-administration of proline or tryptophan. Western blotting was used to detect rPAT1 in rat rectal epithelium. X. Laevis oocytes were injected with SLC36A1 cRNA for the expression of hPAT1, prior to two-electrode voltage clamp measurements.

Results

rPAT1 protein was present in rat rectal epithelium. Approximately 7%–9% of a 1 mg/kg vigabatrin dose was absorbed after rectal administration, regardless of the formulation used. Increasing the dose of vigabatrin 10-fold decreased the absolute bioavailability to 4.2%. Co-administration of proline or tryptophan changed the pharmacokinetic profile, indicating a role of PAT1 in the rectal absorption of vigabatrin. Transport of vigabatrin via hPAT1 expressed in X. Laevis oocytes had a Km of 5.2 ± 0.6 mM and was almost completely inhibited by tryptophan.

Conclusions

Although vigabatrin is a PAT1 substrate and the rPAT1 protein is expressed in the rectum epithelium, vigabatrin has low rectal absorption in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GABA:

γ-amino butyric acid

hPAT1:

proton-coupled amino acid transporter human isoform

mPAT1:

proton-coupled amino acid transporter murine isoform

Pro:

L-proline

rGAPDH:

rat glyceraldehyde 3-phosphate dehydrogenase

rPAT1:

proton-coupled amino acid transporter rat isoform

rSlc36a1 :

gene encoding rat solute carrier member 36a1

SLC36A1 :

gene encoding human solute carrier member 36A1

TEVC:

two-electrode voltage clamp

Vig:

vigabatrin

REFERENCES

  1. Willmore LJ, Abelson MB, Ben-Menachem E, Pellock JM, Shields WD. Vigabatrin: 2008 update. Epilepsia. 2009;50:163–73.

    Article  PubMed  CAS  Google Scholar 

  2. Kossoff EH. Infantile spasms. Neurologist. 2010;16:69–75.

    Article  PubMed  Google Scholar 

  3. Chiron C, Dumas C, Jambaque I, Mumford J, Dulac O. Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res. 1997;26:389–95.

    Article  PubMed  CAS  Google Scholar 

  4. Grant SM, Heel RC. Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in epilepsy and disorders of motor control. Drugs. 1991;41:889–926.

    Article  PubMed  CAS  Google Scholar 

  5. Rey E, Pons G, Olive G. Vigabatrin - clinical pharmacokinetics. Clin Pharmacokinetics. 1992;23:267–78.

    Article  CAS  Google Scholar 

  6. Perucca E. Pharmacokinetic variability of new antiepileptic drugs at different ages. Ther Drug Monit. 2005;27:714–7.

    Article  PubMed  CAS  Google Scholar 

  7. Valdizan EM, Armijo JA. Effect of singel and multiple increasing doses of vigabatrin on brain GABA metabolism and correlation with vigabatrin plasma concentration. Biochem Pharmacol. 1992;43:2143–50.

    Article  PubMed  CAS  Google Scholar 

  8. Hoke JF, Yuh L, Antony KK, Okerholm RA, Elberfeld JM, Sussman NN. Pharmacokinetics of vigabatrin following single and multiple oral doses in normal volunteers. J Clin Pharmacol. 1993;33:458–62.

    PubMed  CAS  Google Scholar 

  9. Frisk-Holmberg M, Kerth P, Meyer P. Effect of food on the absorption of vigabatrin. Br J Pharmacol. 1989;27:S23–5.

    Google Scholar 

  10. Deckers CL, Knoester PD, de Haan GJ, Keyser A, Renier WO, Hekster YA. Selection criteria for the clinical use of newer antiepileptic drugs. CNS Drugs. 2003;17:405–21.

    Article  PubMed  CAS  Google Scholar 

  11. Henczi M, Nagy J, Weaver DF. Determination of octanol-water partition coefficients by an HPLC method for anticonvulsant structure-activity studies. J Pharm Pharmacol. 1995;47:345–7.

    Article  PubMed  CAS  Google Scholar 

  12. Crowe A, Teoh YK. Limited P-glycoprotein mediated efflux for anti-epileptic drugs. J Drug Target. 2006;14:291–300.

    Article  PubMed  CAS  Google Scholar 

  13. Abbot EL, Grenade DS, Kennedy DJ, Gatfield KM, Thwaites DT. Vigabatrin transport across the human intestinal epithelial (Caco-2) brush-border membrane is via the H + -coupled amino-acid transporter hPAT1. Br J Pharmacol. 2006;147:298–306.

    Article  PubMed  CAS  Google Scholar 

  14. Grigat S, Fork C, Bach M, Golz S, Geerts A, Schomig E, Grundemann D. The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos. 2009;37:330–7.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson CM, Grenade DS, Boll M, Foltz M, Wake KA, Munck BG, Daniel H, Ganapathy V, Thwaites DT. H+/amino acid transporter 1 (PAT1) is the imino acid carrier: an intestinal nutrient/drug transporter in human and rat. Gastroenterology. 2004;127:1410–22.

    Article  PubMed  CAS  Google Scholar 

  16. Metzner L, Brandsch M. Transport of pharmacologically active proline derivatives by the human proton-coupled amino acid transporter hPAT1. Eur J Pharn Biopharm. 2004;309:28–35.

    CAS  Google Scholar 

  17. Howard A, Goodlad RA, Walters JR, Ford D, Hirst BH. Increased expression of specific intestinal amino acid and peptide transporter mRNA in rats fed by TPN is reversed by GLP-2. J Nutr. 2004;134:2957–64.

    PubMed  CAS  Google Scholar 

  18. Broberg ML, Holm R, Tønsberg H, Frølund S, Ewon KB, Nielsen AL, Brodin B, Jensen A, Kall MA, Christensen KV, Nielsen CU. Function and expression of the proton-coupled amino acid transporter Slc36a1 along the rat gastrointestinal tract: Implications for intestinal absorption of gaboxadol. Submitted Br J Pharmacol (2011).

  19. Frolund S, Holm R, Brodin B, Nielsen CU. The proton-coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly-Gly, Gly-Sar and other Gly-Gly mimetics. Br J Pharmacol. 2010;161:589–600.

    Article  PubMed  CAS  Google Scholar 

  20. Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LH. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell. 2006;23:471–82.

    Article  PubMed  CAS  Google Scholar 

  21. Larsen M, Holm R, Jensen KG, Brodin B, Nielsen CU. Intestinal gaboxadol absorption via PAT1(SLC36A1): modified absorption in vivo following co-administration of L-tryptophan. Br J Pharmacol. 2009;157:1380–9.

    Article  PubMed  CAS  Google Scholar 

  22. Frolund S, Cutillas O, Larsen M, Brodin B, Nielsen CU. delta-aminolevulinic acid is a substrate for SLC36A1 (hPAT1). Br J Pharmacol. 2010;159:1339–53.

    Article  PubMed  CAS  Google Scholar 

  23. Metzner L, Dorn M, Markwardt F, Brandsch M. The orally active antihyperglycemic drug beta-guanidinopropionic acid is transported by the human proton-coupled amino acid transporter hPAT1. Mol Pharm. 2009;6:1006–11.

    Article  PubMed  CAS  Google Scholar 

  24. Chen Z, Fei YJ, Anderson CM, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V. Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol. 2003;546:349–61.

    Article  PubMed  CAS  Google Scholar 

  25. Larsen M, Holm R, Jensen KG, Sveigaard C, Brodin B, Nielsen CU. 5-Hydroxy-L-tryptophan alters gaboxadol pharmacokinetics in rats: Involvement of PAT1 and rOat1 in gaboxadol absorption and elimination. Eur J Pharm Sci. 2010;39:68–75.

    Article  PubMed  CAS  Google Scholar 

  26. Schneider MR, Dahlhoff M, Horst D, Hirschi B, Trulzsch K, Muller-Hocker J, Vogelmann R, Allgauer M, Gerhard M, Steininger S, Wolf E, Kolligs FT. A key role for E-cadherin in intestinal homeostasis and paneth cell maturation. PLoS ONE. 5 (2010).

  27. Van Hoorde L, Braet K, Mareel M. The N-cadherin/catenin complex in colon fibroblasts and myofibroblasts. Cell Adhesion and Communication. 7:139- + (1999).

    Google Scholar 

  28. Jones M, Sabatini PJB, Lee FSH, Bendeck MP, Langille BL. N-cadherin upregulation and function in response of smooth muscle cells to arterial injury. Arterioscler Thromb Vasc Biol. 2002;22:1972–7.

    Article  PubMed  CAS  Google Scholar 

  29. Sagne C, Agulhon C, Ravassard P, Darmon M, Hamon M, El MS, Gasnier B, Giros B. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc Natl Acad Sci U S A. 2001;98:7206–11.

    Article  PubMed  CAS  Google Scholar 

  30. Boll M, Foltz M, Rubio-Aliaga I, Kottra G, Daniel H. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J Biol Chem. 2002;277:22966–73.

    Article  PubMed  CAS  Google Scholar 

  31. Wreden CC, Johnson J, Tran C, Seal RP, Copenhagen DR, Reimer RJ, Edwards RH. The H + -coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon and plasma membrane of hippocampal neurons. J Neurosci. 2003;23:1265–75.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

Kasper Gundel Jensen is acknowledged for skilful technical support with the development of the bioanalytical method and the analysis of the plasma samples. Once again, we are grateful to the staff in the animal facilities for their help and support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Uhd Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, R., Kall, M.A., Frølund, S. et al. Rectal Absorption of Vigabatrin, a Substrate of the Proton Coupled Amino Acid Transporter (PAT1, Slc36a1), in Rats. Pharm Res 29, 1134–1142 (2012). https://doi.org/10.1007/s11095-012-0673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0673-0

KEY WORDS

Navigation