Skip to main content

Mechanism-Based Pharmacodynamic Modeling

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Pharmacodynamic modeling is based on a quantitative integration of pharmacokinetics, pharmacological systems, and (patho-) physiological processes for understanding the intensity and time-course of drug effects on the body. Application of such models to the analysis of meaningful experimental data allows for the quantification and prediction of drug–system interactions for both therapeutic and adverse drug responses. In this chapter, commonly used mechanistic pharmacodynamic models are presented with respect to their important features, operable equations, and signature profiles. In addition, literature examples showcasing the utility of these models to adverse drug events are highlighted. Common model types that are covered include simple direct effects, biophase distribution, indirect effects, signal transduction, and irreversible effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger SI, Iyengar R (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med 3:129–135

    Article  PubMed  CAS  Google Scholar 

  2. Levy G (1964) Relationship between elimination rate of drugs and rate of decline of their pharmacologic effects. J Pharm Sci 53:342–343

    Article  PubMed  CAS  Google Scholar 

  3. Levy G (1966) Kinetics of pharmacologic effects. Clin Pharmacol Ther 7:362–372

    PubMed  CAS  Google Scholar 

  4. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510–518

    Article  PubMed  CAS  Google Scholar 

  5. Yates FE (1975) On the mathematical modeling of biological systems: a qualified ‘pro’. In: Vernberg FJ (ed) Physiological adaptation to the environment. Intext Educational Publishers, New York

    Google Scholar 

  6. Wagner JG (1968) Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 20:173–201

    Article  PubMed  CAS  Google Scholar 

  7. Friberg LE, Isbister GK, Hackett LP, Duffull SB (2005) The population pharmacokinetics of citalopram after deliberate self-poisoning: a Bayesian approach. J Pharmacokinet Pharmacodyn 32:571–605

    Article  PubMed  CAS  Google Scholar 

  8. Minematsu T, Ohtani H, Yamada Y, Sawada Y, Sato H, Iga T (2001) Quantitative relationship between myocardial concentration of tacrolimus and QT prolongation in guinea pigs: pharmacokinetic/pharmacodynamic model incorporating a site of adverse effect. J Pharmacokinet Pharmacodyn 28:533–554

    Article  PubMed  CAS  Google Scholar 

  9. Laizure SC, Parker RB (2009) Pharmacodynamic evaluation of the cardiovascular effects after the coadministration of cocaine and ethanol. Drug Metab Dispos 37:310–314

    Article  PubMed  CAS  Google Scholar 

  10. Vage C, Saab N, Woster PM, Svensson CK (1994) Dapsone-induced hematologic toxicity: comparison of the methemoglobin-forming ability of hydroxylamine metabolites of dapsone in rat and human blood. Toxicol Appl Pharmacol 129:309–316

    Article  PubMed  CAS  Google Scholar 

  11. Furchgott RF (1955) The pharmacology of vascular smooth muscle. Pharmacol Rev 7:183–265

    PubMed  CAS  Google Scholar 

  12. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25:358–371

    PubMed  CAS  Google Scholar 

  13. Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M (2007) Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of norbuprenorphine in rats. J Pharmacol Exp Ther 321:598–607

    Article  PubMed  CAS  Google Scholar 

  14. Stroh M, Addy C, Wu Y, Stoch SA, Pourkavoos N, Groff M, Xu Y, Wagner J, Gottesdiener K, Shadle C, Wang H, Manser K, Winchell GA, Stone JA (2009) Model-based decision making in early clinical development: minimizing the impact of a blood pressure adverse event. AAPS J 11:99–108

    Article  PubMed  CAS  Google Scholar 

  15. Nagashima R, O’Reilly RA, Levy G (1969) Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clin Pharmacol Ther 10:22–35

    PubMed  CAS  Google Scholar 

  16. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    PubMed  CAS  Google Scholar 

  17. Jusko WJ, Ko HC (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56:406–419

    Article  PubMed  CAS  Google Scholar 

  18. Sharma A, Jusko WJ (1998) Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol 45:229–239

    Article  PubMed  CAS  Google Scholar 

  19. Sharma A, Ebling WF, Jusko WJ (1998) Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci 87:1577–1584

    Article  PubMed  CAS  Google Scholar 

  20. Woo S, Krzyzanski W, Jusko WJ (2008) Pharmacodynamic model for chemotherapy-induced anemia in rats. Cancer Chemother Pharmacol 62:123–133

    Article  PubMed  CAS  Google Scholar 

  21. Sun YN, Jusko WJ (1998) Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J Pharm Sci 87:732–737

    Article  PubMed  CAS  Google Scholar 

  22. Mager DE, Jusko WJ (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70:210–216

    Article  PubMed  CAS  Google Scholar 

  23. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721

    Article  PubMed  Google Scholar 

  24. Zandvliet AS, Schellens JH, Copalu W, Beijnen JH, Huitema AD (2009) Covariate-based dose individualization of the cytotoxic drug indisulam to reduce the risk of severe myelosuppression. J Pharmacokinet Pharmacodyn 36:39–62

    Article  PubMed  CAS  Google Scholar 

  25. Zandvliet AS, Siegel-Lakhai WS, Beijnen JH, Copalu W, Etienne-Grimaldi MC, Milano G, Schellens JH, Huitema AD (2008) PK/PD model of indisulam and capecitabine: interaction causes excessive myelosuppression. Clin Pharmacol Ther 83:829–839

    Article  PubMed  CAS  Google Scholar 

  26. Soto E, Staab A, Freiwald M, Munzert G, Fritsch H, Doge C, Troconiz IF (2010) Prediction of neutropenia-related effects of a new combination therapy with the anticancer drugs BI 2536 (a Plk1 inhibitor) and pemetrexed. Clin Pharmacol Ther 88:660–667

    Article  PubMed  CAS  Google Scholar 

  27. Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895

    Article  PubMed  CAS  Google Scholar 

  28. Fasanmade AA, Jusko WJ (1995) An improved pharmacodynamic model for formation of methemoglobin by antimalarial drugs. Drug Metab Dispos 23:573–576

    PubMed  CAS  Google Scholar 

  29. Houze P, Mager DE, Risede P, Baud FJ (2010) Pharmacokinetics and toxicodynamics of pralidoxime effects on paraoxon-induced respiratory toxicity. Toxicol Sci 116:660–672

    Article  PubMed  CAS  Google Scholar 

  30. Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ (2004) Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn 31:345–380

    Article  PubMed  CAS  Google Scholar 

  31. Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ (2007) Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 34:643–667

    Article  PubMed  CAS  Google Scholar 

  32. Barras MA, Duffull SB, Atherton JJ, Green B (2009) Modelling the occurrence and severity of enoxaparin-induced bleeding and bruising events. Br J Clin Pharmacol 68:700–711

    Article  PubMed  CAS  Google Scholar 

  33. Jusko WJ, Ko HC, Ebling WF (1995) Convergence of direct and indirect pharmacodynamic response models. J Pharmacokinet Biopharm 23:5–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. William J. Jusko (University at Buffalo, SUNY) for reviewing this chapter and providing insightful feedback. This work was supported by Grant No. GM57980 from the National Institutes of General Medicine, Grant No. DA023223 from the National Institute on Drug Abuse, and Hoffmann-La Roche Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Mager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Felmlee, M.A., Morris, M.E., Mager, D.E. (2012). Mechanism-Based Pharmacodynamic Modeling. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics