Skip to main content
Log in

A mathematical model for dynamics of cardiovascular drug action: Application to intravenous dihydropyridines in healthy volunteers

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A physiologically based mathematical model was built to describe the pharmacodynamic effects in response to the administration of intravenous (iv)dihydropyridine drugs in healthy volunteers. This model incorporates a limited number of hemodynamic variables, namely, mean arterial blood pressure (MAP),cardiac output (CO)or heart rate (HR),stroke volume (SV),and total peripheral resistance (TPR),into a closed-loop system supposed to represent essential features of the cardiovascular regulation. We also defined an additional auxiliary control variable (U)which is thought to represent primarily the role of the baroreceptor reflex. It was assumed that the variable Uwas related to MAPchanges through both deviation- and ratesensitive mechanisms. Other model parameters are the baseline levels for MAP, CO(or HR),and TPR,as well as time constants to account for further temporal aspects of the regulation. Finally, TPRwas assumed to be linked to the plasma concentrations of dihydropyridine drugs via a conventional pharmaco-kinetic/pharmacodynamic (PK/PD) model, relying upon an effect compartment and a linear, hyperbolic, or sigmoidal relationship between the reduction in TPRand the drug concentrations at the effect site. The model characteristics were explored by studying the influence of various parameters, including baseline levels and deviation- and rate-sensitive control parameters, on the hemodynamic responses to a fictive constant rate ivinfusion of a vasodilator drug. Attempts were also made to mimic literature data with nifedipine, following ivadministration under both constant and exponentially decreasing infusion rates. The applicability of the model was demonstrated by fitting hemodynamic data following ivinfusion of nicardipine to healthy volunteers, under experimental conditions similar to those described above for nifedipine. The effect model for the action of nicardipine on TPR,combined with the physiological model including a feedback control loop, allowed an adequate quantitative description of time profiles for both cardiac output and mean arterial pressure. The suggested model is a useful tool for integrated data analysis of hemodynamic responses to vasodilator drugs in healthy volunteers. Computer simulations suggest that a graded variation of a few model parameters-including baseline levels of TPRand MAPand the deviaion-sensitive parameter of the arterial pressure control-would also be able to account for the pattern of hemodynamic response observed in hypertensive patients, which is qualitatively different to that seen in normotensive subjects. Extrapolation of drug response from the healthy volunteer to the hypertensive patient is allowed by our model. Its usefulness for an early evaluation of drug efficacy during drug development is under current investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Colburn. Pharmacokinetic/pharmacodynamic modeling: What it is !J. Pharmacokin. Biopharm. 15:545–555 (1987).

    Article  CAS  Google Scholar 

  2. A. Rescigno and J. S. Beck. The use and abuse of models.J. Pharmacokin. Biopharm. 15:327–340 (1987).

    Article  CAS  Google Scholar 

  3. P. D. Kroboth, V. D. Schmith, and R. B. Smith. Pharmacodynamic modelling. Application to new drug development.Clin. Pharmacokin. 20:91–98 (1991).

    Article  CAS  Google Scholar 

  4. N. H. G. Holford and L. B. Sheiner. Understanding the dose-effect relationship: Clinical application of pharmacokinetic-pharmacodynamic models.Clin. Pharmacokin. 6:429–453 (1981).

    Article  CAS  Google Scholar 

  5. P. D. Kroboth and T. L. Schwinghammer. Modeling.J. Clin. Pharmacol. 28:885–888 (1988).

    Google Scholar 

  6. N. H. G. Holford. Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose-effect relationship.Clin. Pharmacokin. 11:483–504 (1986).

    Article  CAS  Google Scholar 

  7. R. J. Francis, A. N. Brown, L. Kler, T. Fasanella D'Amore, J. Nussberger, B. Waeber, and H. R. Brunner. Pharmacokinetics of the converting enzyme inhibitor cilazapril in normal volunteers and the relationship to enzyme inhibition: Development of a mathematical model.J. Cardiovasc. Pharmacol. 9:32–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. R. A. Boyd, S. K. Chin, O. Don-Pedro, D. Verotta, L. B. Sheiner, R. L. Williams, and K. M. Giacomini. The pharmacokinetics and pharmacodynamics of diltiazem and its metabolites in healthy adults after a single oral dose.Clin. Pharmacol. Ther. 46:408–419 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. P. A. Meredith, H. L. Elliott, A. W. Kelman, and J. L. Reid. Application of pharmacokinetic-pharmacodynamic modelling for the comparison of quinazoline a-adrenoceptor antagonists in normotensive volunteers.J. Cardiovasc. Pharmacol. 7:532–537 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. P. A. Meredith, H. L. Elliott, A. W. Kelman, J. Vincent, and J. L. Reid. Pharmacokinetic and pharmacodynamic modelling of the alpha adrenoceptor antagonist doxazosin.Xeno-biotica 18:123–129 (1988).

    Article  CAS  Google Scholar 

  11. R. Donnelly, P. A. Meredith, and H. L. Elliott. Pharmacokinetic-pharmacodynamic relationships of α-adrenoceptor antagonists.Clin. Pharmacokin. 17:264–274 (1989).

    Article  CAS  Google Scholar 

  12. J. B. Schwartz, D. Verotta, and L. B. Sheiner. Pharmacokinetic modeling of verapamil effects under steady-state and nonsteady-state conditions.J. Pharmacol. Exp. Ther. 251:1032–1038 (1989).

    CAS  PubMed  Google Scholar 

  13. D. De Lamy, M. Canal, T. Hulot, S. Allard, H. Caplain, and A. Dufour. Relation between pharmacokinetics and pharmacodynamics of arotinolol, a new antihypertensive agent, after increasing oral doses in healthy volunteers.Eur. J. Drug Metab., Special issue, p. 40 (Abstr. 364) (1990).

  14. K. H. Graefe, R. Ziegler, W. Wingender, K. D. Ramsch, and H. Schmitz. Plasma concentration-response relationships for some cardiovascular effects of dihydropyridines in healthy subjects. clin.Pharmacol. Ther. 43:16–22 (1988).

    Article  CAS  Google Scholar 

  15. N. D. Huebert, G. F. Di Francesco, and K. D. Haegele. Pharmacokinetics and pharmacodynamics of some dihydropyridine calcium antagonists in the renal hypertensive Beagle dog.International Symposium on Measurement and Kinetics of In Vivo Drug Effects, Noordwijk, The Netherlands, 1990.

    Google Scholar 

  16. H. Merdjan, S. Kirkesseli, M. Guerret, V. Pinaud, C. Dubray, and D. Lavéne. Pharmacokinetic-pharmacodynamic relationships of intravenous isradipine in healthy volunteers.International Symposium on Measurement and Kinetics of In Vivo Drug Effects, Noordwijk, The Netherlands, 1990.

    Google Scholar 

  17. G. Mikus, C. Zekorn, T. Brecht, and M. Eichelbaum. Acute haemodynamic effects of i.v. nitrendipine in healthy subjects.Eur. J. Clin. Pharmacol. 41:99–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. V. Carrara, H. C. Porchet, and P. Dayer. Isradipine input rate and its concentration-effect relationship.Clin. Pharmacol. Ther. 47:128 (Abstr. PP-14) (1990).

    Google Scholar 

  19. A. F. Cohen, M. A. Van Hall, J. Van Harten, R. C. Schoemaker, P. Johansson, D. D. Breimer, R. Visser, and B. Edgar. The influence of infusion rate on the hemodynamic effects of felodipineClin. Pharmacol. Ther. 48:309–317 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. J. Van Harten, P. Van Brummelen, R. R. E. C. M. Zeegers, M. Danhof, and D. D. Breimer. The influence of infusion rate on the pharmacokinetics and haemodynamic effects of nisoldipine in man.Br. J. Clin. Pharmacol. 25:709–717 (1988).

    Article  PubMed Central  PubMed  Google Scholar 

  21. C. H. Kleinbloesem, P. Van Brummelen, M. Danhof, H. Faber, J. Urquhart, and D. D. Breimer. Rate of increase in the plasma concentration of nifedipine as a major determinant of its hemodynamic effects in humans.Clin. Pharmacol. Ther. 41:26–30. (1987).

    Article  CAS  PubMed  Google Scholar 

  22. O. Lederballe-Pedersen, N. J. Christensen, and K. D. Ramsch. Comparison of acute effects of nifedipine in normotensive and hypertensive man.J. Cardiovasc. Pharmacol. 2:357–366 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. G. A. Macgregor, C. Rotellar, N. D. Markandu, S. J. Smith, and G. A. Sagnella. Contrasting effects of nifedipine, captopril, and propranolol in normotensive and hypertensive subjects.J. Cardiovasc. Pharmacol. 4:S358-S362 (1982).

    Article  PubMed  Google Scholar 

  24. P. Veng-Pedersen. What is a rational modeling approach?J. Clin. Pharmacol. 28:881–885 (1988).

    Google Scholar 

  25. A. C. Guyton and T. G. Coleman. Long-term regulation of the circulation: Interrelationships with body fluid volume. InPhysical Bases of Circulatory Transport, E. B. Reeve and A. C. Guyton (eds.), W. B. Saunders, Philadelphia, 1967 pp. 170–201.

    Google Scholar 

  26. M. S. Leaning, H. E. Pullen, E. R. Carson, and L. Finkelstein. Modelling a complex biological system: The human cardiovascular system-1. Methodology and model description.Trans. Inst. M.C. 5:71–86 (1983).

    Article  Google Scholar 

  27. H. R. Kirchheim. Systemic arterial baroreceptor reflexes.Physiol. Rev. 56:100–176 (1976).

    CAS  PubMed  Google Scholar 

  28. R. J. Linden. Reflexes from the heart.Prog. Cardiovasc. Dis. 18:201–221 (1975).

    Article  Google Scholar 

  29. T. G. Pickering, B. Gribbin, and P. Sleight. Comparison of the reflex heart rate response to rising and falling arterial pressure in man.Cardiovasc. Res. 6:277–283 (1972).

    Article  CAS  PubMed  Google Scholar 

  30. A. T. Wu, I. J. Massey, and S. Kushinsky, Capillary column gas Chromatographic method using electron-capture detection for the simultaneous determination of nicardipine and its pyridine metabolite in plasma.J. Chromatog. 415:65–73 (1987).

    Article  CAS  Google Scholar 

  31. J. Vilain, P. Francheteau, and J. L. Steimer. PHACIN-Un logiciel pour la modélisation compartimentale et l'estimation de paramétres pharmacocinétiques. In F. Grémy (ed.),Journées d'Informatique Médicale de Montpellier, Sauramps Médical, Montpellier, France, 1988, pp. 112–123.

    Google Scholar 

  32. L. B. Sheiner. ELSFIT—A program for the extended least squares fit to individual pharmacokinetic data. Technical Report, Division of Clinical Pharmacology, University of California, San Francisco, CA 94143, 1983.

    Google Scholar 

  33. C.C. Peck, S. L. Beal, L. B. Sheiner, and A. I. Nichols. Extended least squares nonlinear regression: A possible solution to the “choice of weights” problem in analysis of individual pharmacokinetic data.J. Pharmacokin. Biopharm. 12:545–558 (1984).

    Article  CAS  Google Scholar 

  34. J. D. Bristow, A. J. Honour, G. W. Pickering, P. Sleight, and H. S. Smyth. Diminished baroreflex sensitivity in high blood pressure.Circulation 39:48–54 (1969).

    Article  CAS  PubMed  Google Scholar 

  35. A. C. Simon, J. Levenson, J. Bouthier, M. E. Safar, and A. P. Avolio. Evidence of early degenerative changes in large arteries in human essential hypertension.Hypertension 7:675–680 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. C. H. Kleinbloesem, P. Van Brummelen, and D. D. Breimer. Nifedipine. Relationship between pharmacokinetics and pharmacodynamics.Clin. Pharmacokin. 12:12–29 (1987).

    Article  CAS  Google Scholar 

  37. C. Cobelli and J. J. Di Stefano III. Parameter and structural identifiability concepts and ambiguities: A critical review and analysis.Am. J. Physiol. 239:R7-R24 (1980).

    CAS  PubMed  Google Scholar 

  38. D. L. Weiner. NONLIN84/PCNONLIN: Software for the statistical analysis of non-linear models.Meth. Find. Exp. Clin. Pharmacol. 8:625–628 (1986).

    CAS  Google Scholar 

  39. M. Berman, W. F. Beltz, P. C. Greif, R. Chabay, and R. C. Boston.CONSAM User's Guide, National Cancer Institute, NIH, Bethseda, MD, 1983.

    Google Scholar 

  40. E. C. Steiner, T. D. Rey, and P. S. McCroskey.SimuSolv: Modeling and Simulation Software, Dow Chemical Company, Midland, Ml 48674, 1990.

    Google Scholar 

  41. P. Francheteau, J. L. Steimer, H. Merdjan, M. Guerret, C. Dubray, and P. Sassano. A mathematical model for dynamics of cardiovascular drug action with application to intravenous nicardipine in volunteers and hypertensive patients.International Symposium on Measurement and Kinetics of In Vivo Drug Effects, Noordwijk, The Netherlands, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francheteau, P., Steimer, J.L., Merdjan, H. et al. A mathematical model for dynamics of cardiovascular drug action: Application to intravenous dihydropyridines in healthy volunteers. Journal of Pharmacokinetics and Biopharmaceutics 21, 489–514 (1993). https://doi.org/10.1007/BF01059111

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059111

Key words

Navigation