Skip to main content
Log in

Porous Oral Drug Delivery System: Tablets

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

One of the most active and promising areas of research in this pharmaceutical field is the application of porous structures in solid-state pharmaceuticals, particularly given the large number of existing and emerging therapeutic molecules that are classified as poorly soluble, including approximately 40% of the top 200 oral drugs globally. Porous compacts have been extensively studied for pharmaceutical applications due to their good biocompatibility, biodegradability, and satisfactory solubility at low toxicity. Porous compacts can be filled in hard gelatine capsule shells or processed to form tablets. Porous formulations in the tablet form showed good biocompatibility without causing undesirable side effects in biological systems. The porous particulate drug formulations can be of both types such as immediate or sustained release delivery system. The evolution of porous matrices as potential drug delivery systems continues with ongoing efforts in improving the loading and controlled release of therapeutics, with particular interest in targeted delivery. The mechanism of immediate release from porous tablets can be attributed to quick entry of water into porous matrix which causes rapid disintegration and dissolution of the tablet. The oral bioavailability of poorly water-soluble drugs is enhanced by porous compacts. Porous compacts are also used to enhance the dissolution of relatively insoluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ahuja, and K. Pathak, Indian J. Pharm. Sci., 71(6), 599 – 607 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Cosijns, C. Vervaet, J. Luyten, et al., Eur. J. Pharm. Biopharm., 67(2), 498 – 506 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. G. V. Baskar, N. Narayanan, R. Gaikward, and A. Samad, Tropical J. Pharm. Res., 9(2), 181 – 186 (2010).

    Article  CAS  Google Scholar 

  4. H. Ma, Y. Hei, Y.Wei, and H. Li, Mater. Lett., 196(1), 396 – 399 (2017).

    Article  CAS  Google Scholar 

  5. N. H. Maniya, S. R. Patel, and Z. V. P. Murthy, Rev. Adv. Mater. Sci., 44, 257 – 272 (2016).

    CAS  Google Scholar 

  6. T. J. Barnes, K. L. Jarvis, and C. A. Prestidge, Ther. Deliv., 4(7), 811 – 823 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. A. Adolfsson and C. Nystrom, Int. J. Pharmaceut., 132(1–2), 95 – 106 (1996).

    Article  CAS  Google Scholar 

  8. M. L. González-Rodríguez, J. I. Pérez-Martinez, S. Merino, et al., Drug Develop. Ind. Pharm., 27(5), 439 – 446 (2001).

    Article  Google Scholar 

  9. P. Patrice, T. Pierre, B. Virginie, et al., AIP Conf. Proc., 1145 (1), 453 – 456 (2009). Available from: http: //adsabs.harvard.edu/abs/2009AIPC.1145.453P. Accessed on December 5, 2017.

  10. N. Brielles, F. Chantraine, M. Viana, et al., J. Colloid Interface. Sci., 328(2), 344 – 352 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. M. Arruebo, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 4(1), 16 – 30 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. A. Correia, S. Mohammad-Ali, E. Mäkila, et al., ACS Appl. Mater. Interfaces, 7(41), 23197 – 23204 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. M. U. Ghori and B. R. Conwa, Am. J. Pharm. Sci., 3(5), 103 – 109 (2015).

    CAS  Google Scholar 

  14. A. Nokhodchi, S. Raja, P. Patel, and K. Asare-Addo, Bioimpacts, 2(4), 175 – 187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Raghuveer, D. Madhuri, A. P. Rani, and Saichaitanyaangalakurthi, Der Pharmacia Lett., 8(10), 65 – 71 (2016).

  16. K. M. Hwang, C. H. Cho, N. T. Tung, et al., Eur. J. Pharm. Biopharm., 115, 39 – 51 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. A. Garg, and M. M. Gupta, J. Drug Deliv. Therapeut., 3(2), 207 – 214 (2013).

    CAS  Google Scholar 

  18. G. K. Babu, P. S. Babu, and M. Khagga, Int. J. Pharm. Invest., 6(3), 169 – 179 (2016).

    Article  CAS  Google Scholar 

  19. J. Y. Kim, S. H. Kim, Y. S. Rhee, et al., Cellulose, 20(6), 3143 – 3154 (2013).

    Article  CAS  Google Scholar 

  20. J. Y. Kim, J. W. Seo, Y. S. Rhee, et al., J. Pharm. Sci. 103(1), 262 – 273 (2014).

    Article  CAS  Google Scholar 

  21. P. Munusamy, Design, synthesis and characterization of porous silica nanoparticles and application in intracellular drug delivery (2010). Available from: https: //theses.lib.vt.edu/theses/available/etd-07132010 – 100208/unrestricted/Munusamy P D 2010.pdf. Accessed on November 4, 2017.

  22. M. S. Khan, G. D. Vishakante, and A. Bathool, Turkish J. Pharm. Sci. 9(2), 183 – 198 (2012).

    CAS  Google Scholar 

  23. B. Ehdaie, C. Krause, and J. A. Smith, Env. Sci. Technol., 48(23), 13901 – 13908 (2014).

    Article  CAS  Google Scholar 

  24. M. S. Khan, G. D. Vishakante, A. Bathool, et al., J. Pharm. Res., 4(8), 2657 – 2661 (2011).

    CAS  Google Scholar 

  25. V. S. Wagh, K. N. Tarkase, K. G. Albhar, et al., Der Pharmacia Lett., 6(1) 16 – 29 (2014).

    CAS  Google Scholar 

  26. M. Chandira, S. Shanthi, D. Bhowmik, et al., Pharm. Innovation 1(3) 30 – 36 (2012).

    CAS  Google Scholar 

  27. A. U. Maheswari, K. Elango, D. Chellakumari, et al., Int. J. Pharm. Sci. Res., 3(6) 1625 – 1631 (2012).

    CAS  Google Scholar 

  28. M. K. Upadhyay, A. H. Kathiriya, and K. V. Shah, Pharm. Sci. Monitor., 4(3), Supl 1, 20 – 30 (2013).

  29. H. Patel, and M. M. Patel, Int. J. Pharm. Sci. Res., 3(6), 1761 – 1767 (2012).

    CAS  Google Scholar 

  30. T. Phaechamud, P. Issarayungyuen, and W. Pichayakorn, Int. J. Biol. Macromol. 85 634–644 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. C. Sander and P. Holm, AAPS Pharm. Sci. Technol., 10(4) 1388 – 1395 (2009).

    Article  CAS  Google Scholar 

  32. P. Venugopal, K. Gnanaprakash, B. Kumar, et al., Int. J. Biopharm., 5(4), 258 – 264 (2014).

    Google Scholar 

  33. B. S. Patil and N. G. R. Rao, J. Appl. Pharm. Sci. 1(4) 83 – 88 (2011).

    Google Scholar 

  34. T. O. Oh, J. Y. Kim, J. M. Ha, et al., Eur. J. Pharm. Biopharm., 83(3) 460 – 467 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. S. Edavalath, K. Shivanand, K. Prakasam, et al., Int. J. Pharm. Pharm. Sci., 3(1) 80 – 88 (2011).

    CAS  Google Scholar 

  36. Z. A. Khan, R. Tripathi, and B. Mishra, Acta Polon. Pharm. Drug Res., 69(6) 1125 – 1136, (2012).

    CAS  Google Scholar 

  37. M. M. Jadav, S. R. Teraiya, K. N. Patel, et al., Int. J. Pharm. Res. Scholar. 1(1) 254 – 267 (2012).

    CAS  Google Scholar 

  38. P. Sandhya, H. Siddiqua, A. Sultana, et al., IOSR J. Pharm. Biol. Sci., 7(4) 1 – 7 (2013).

    Google Scholar 

  39. A. Bathool, D. V. Gowda, M. S. Khan, et al., J. Adv. Pharm. Tech. Res. 3(2) 124 – 129 (2012).

    Article  CAS  Google Scholar 

  40. R. P. R. Monica, H. J. Shilpa, S. T. Swati, et al., Indian J. Pharm. Sci., 79(2), 241 – 249 (2017).

    Article  Google Scholar 

  41. M. J. Bhitre, B. S. Bhanage, S. J. Shirgaonkar, et al., Int. J. Pharm. Biol. Sci., 3(3), 118 – 134 (2013).

    Google Scholar 

  42. H. F. Cheng, Y. Feng, Q. J. Duan, et al. Tropical J. Pharm. Res. 14(6), 935 – 940 (2015).

    Article  CAS  Google Scholar 

  43. M. Ravi Kumar,M. V. Anjaneyulu, and T. Ganeswar, Int. J. Res. Pharm. Nano Sci., 3(6), 528 – 535 (2014).

    Google Scholar 

  44. N. Kshirasagar, P. Deepika, S. Malvey, et al., J. Gen. Pract., 3(4), (2015). DOI: 10.4172 / 2329 – 9126.1000208.

  45. S. Daram, P. R. Veerareddy, R. Jukanti, et al., Der Pharmacia Lett., 3(2), 97 – 103 (2011).

    CAS  Google Scholar 

  46. G. P. R. Sree, V. R. M. Gupta, N. Devanna, et al., J. Global Trend. Pharm. Sci., 5(4), 2125 – 2131 (2014).

    Google Scholar 

  47. N. Kshirasagar, S. Malvey, K. S. Kumar, et al., Indo-Am. J. Pharm. Sci., 3(1), 22 – 30 (2016).

    CAS  Google Scholar 

  48. B. Basu, A. Bagadiya, S. Makwana, et al., J. Adv. Pharm. Tech. Res., 2(4) 266 – 273 (2011).

    Article  CAS  Google Scholar 

  49. V. Rajani, B. Pravallika, K. Jyothirmyi, et al., Int. J. Pharm. Pharm. Anal., 1(2), 38 – 46 (2017).

    Google Scholar 

  50. L. Kumar, M. S. Reddy, R. K. Shirodkar, et al., Indian J. Pharm., Sci., 75(5), 585 – 590 (2013).

    CAS  Google Scholar 

  51. E. J. Berg. Diffusion controlled drug release from slurry formed, porous, organic and clay-derived pellets. Available from: https: //www.diva-portal.org/smash/get/diva2:457470/FULLTEXT02.pdf. Accessed on December 2, 2017.

  52. B. K. Nanjwade, S. R. Mhase, and Manvi, Tropical J. Pharm. Res., 10(4), 375 – 383 (2011).

  53. T. O. Oh, J. Y. Kim, J. M. Ha, et al., Eur. J. Pharm. Biopharm., 83(3), 460 – 467 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. M. Rahman Md., Q. Ahsan Md., A. B. R. Khalipha, et al., Eur. Sci. J., 10(24), 351 – 363 (2014).

  55. V. Mohylyuk and L. Davtian, Int. J. Pharm. Tech. Res., 8(6), 147 – 155 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.Y., Verma, R. & Kumar, L. Porous Oral Drug Delivery System: Tablets. Pharm Chem J 52, 553–561 (2018). https://doi.org/10.1007/s11094-018-1859-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1859-5

Keywords

Navigation