Skip to main content
Log in

Atmospheric Pressure Cold Plasma as a Potential Technology to Degrade Carbamate Residues in Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cold plasma technology is an advanced oxidation process (AOP), which has shown significant potential for pesticide degradation. The aim of this study was to determine the degradation efficacy and transformation products for cold plasma treated carbamates in water. The dissipation of three carbamates, namely, carbaryl, methiocarb and aminocarb were evaluated as a function of treatment voltage (70, 80, and 90 kV) and duration (1 to 5 min) using a dielectric barrier discharge. Significant and rapid reduction in the concentrations of carbaryl, methiocarb and aminocarb were observed after cold plasma treatment. A maximum degradation of 50.5% in carbaryl, 99.6% in methiocarb and 99.3% in aminocarb was achieved after 5 min of treatment at an applied voltage of 90 kV. The plasma light emission was evaluated using optical emission spectroscopy revealing the production of reactive oxygen and nitrogen species, besides gas temperatures closer to ambient. The reaction intermediates were identified mostly as oxidation products from the respective carbamates, and reaction pathways were proposed. The toxicity of the degradation products, where available, was reviewed. Overall, this study shows the potential of cold plasma technology as an alternative approach for rapid dissipation of agrochemicals and other micro-pollutants in water and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AOP:

Advanced oxidation process

CCD:

Charge coupled device

DBD:

Dielectric barrier discharge

FNS:

First negative system

LD50 :

Lethal dose for 50% killing

OES:

Optical emission spectroscopy

RMS:

Root mean square

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SPE:

Solid phase extraction

SPS:

Second positive system

T rot :

Rotational Temperature

Tvib :

Vibrational temperature

UV:

Ultraviolet

References

  1. Gupta RC (2006) Toxicology of organophosphate and carbamate compounds, 1st edn. Academic Press, Boca Raton

    Google Scholar 

  2. Ikehata K, El-Din MG (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5(2):81–135. https://doi.org/10.1139/S05-046

    Article  CAS  Google Scholar 

  3. Forget G (1991) Pesticides and the third world. J Toxicol Environ Health 32(1):11–31. https://doi.org/10.1080/15287399109531462

    Article  CAS  PubMed  Google Scholar 

  4. O'Malley M (1997) Clinical evaluation of pesticide exposure and poisonings. Lancet 349(9059):1161–1166

    Article  CAS  Google Scholar 

  5. Van Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82(3):291–307

    Article  Google Scholar 

  6. Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E (2000) Pesticide chemical oxidation: state-of-the-art. Water Res 34(2):366–377. https://doi.org/10.1016/S0043-1354(99)00173-6

    Article  CAS  Google Scholar 

  7. Ikehata K, El-Din MG (2005) Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part I). Ozone Sci Eng 27(2):83–114. https://doi.org/10.1080/01919510590925220

    Article  CAS  Google Scholar 

  8. Aislabie J, Lloyd-Jones G (1995) A review of bacterial-degradation of pesticides. Soil Res 33(6):925–942. https://doi.org/10.1071/SR9950925

    Article  CAS  Google Scholar 

  9. Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384(1):1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046

    Article  CAS  PubMed  Google Scholar 

  10. Ikehata K, El-Din MG (2005) Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part II). Ozone Sci Eng 27(3):173–202. https://doi.org/10.1080/01919510590945732

    Article  CAS  Google Scholar 

  11. Misra NN (2015) The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol 45(2):229–244. https://doi.org/10.1016/j.tifs.2015.06.005

    Article  CAS  Google Scholar 

  12. Zhou R, Zhou R, Yu F, Xi D, Wang P, Li J, Wang X, Zhang X, Bazaka K, Ostrikov K (2018) Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chem Eng J 342:401–409. https://doi.org/10.1016/j.cej.2018.02.107

    Article  CAS  Google Scholar 

  13. Misra NN, Pankaj SK, Walsh T, O’Regan F, Bourke P, Cullen PJ (2014) In-package nonthermal plasma degradation of pesticides on fresh produce. J Hazard Mater 271:33–40. https://doi.org/10.1016/j.jhazmat.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Sarangapani C, Misra NN, Milosavljevic V, Bourke P, O’Regan F, Cullen PJ (2016) Pesticide degradation in water using atmospheric air cold plasma. J Water Process Eng 9:225–232. https://doi.org/10.1016/j.jwpe.2016.01.003

    Article  Google Scholar 

  15. Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljević V, O'Donnell CP, Bourke P, Keener KM, Cullen PJ (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35(1):5–17. https://doi.org/10.1016/j.tifs.2013.10.009

    Article  CAS  Google Scholar 

  16. Misra NN, Martynenko A, Chemat F, Paniwnyk L, Barba FJ, Jambrak AR (2018) Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Crit Rev Food Sci Nutr 58(11):1832–1863. https://doi.org/10.1080/10408398.2017.1287660

    Article  CAS  PubMed  Google Scholar 

  17. Pankaj SK, Misra NN, Cullen PJ (2013) Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov Food Sci Emerg Technol 19:153–157. https://doi.org/10.1016/j.ifset.2013.03.001

    Article  CAS  Google Scholar 

  18. Pankaj SK, Keener KM (2017) Cold Plasma Applications in Food Packaging. In: Reference Module in Food Science. Elsevier. doi: 10.1016/B978–0–08–100596–5.21417–0

  19. Misra NN, Schlüter O, Cullen PJ (2016) Cold plasma in food and agriculture: fundamentals and applications. Academic Press, Elsevier, Boca Raton

    Google Scholar 

  20. Gou Y, Eisert R, Pawliszyn J (2000) Automated in-tube solid-phase microextraction–high-performance liquid chromatography for carbamate pesticide analysis. J Chromatogr A 873(1):137–147. https://doi.org/10.1016/S0021-9673(99)01125-5

    Article  CAS  PubMed  Google Scholar 

  21. Masiá A, Ibáñez M, Blasco C, Sancho JV, Picó Y, Hernández F (2013) Combined use of liquid chromatography triple quadrupole mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry in systematic screening of pesticides and other contaminants in water samples. Anal Chim Acta 761:117–127. https://doi.org/10.1016/j.aca.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  22. Campo J, Masiá A, Blasco C, Picó Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157. https://doi.org/10.1016/j.jhazmat.2013.09.061

    Article  CAS  PubMed  Google Scholar 

  23. Moreira FC, Vilar VJP, Ferreira ACC, dos Santos FRA, Dezotti M, Sousa MA, Gonçalves C, Boaventura RAR, Alpendurada MF (2012) Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale. Chem Eng J 209:429–441. https://doi.org/10.1016/j.cej.2012.08.009

    Article  CAS  Google Scholar 

  24. Tian F, Qiang Z, Liu C, Zhang T, Dong B (2010) Kinetics and mechanism for methiocarb degradation by chlorine dioxide in aqueous solution. Chemosphere 79(6):646–651. https://doi.org/10.1016/j.chemosphere.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Li M, Li W, Jiang Y, Qiang Z (2018) Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process. Chem Eng J 342:155–162. https://doi.org/10.1016/j.cej.2018.02.075

    Article  CAS  Google Scholar 

  26. Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219. https://doi.org/10.1016/j.cej.2014.10.112

    Article  CAS  Google Scholar 

  27. Sarangapani C, O'Toole G, Cullen PJ, Bourke P (2017) Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov Food Sci Emerg Technol 44:235–241. https://doi.org/10.1016/j.ifset.2017.02.012

    Article  CAS  Google Scholar 

  28. Hijosa-Valsero M, Molina R, Schikora H, Müller M, Bayona JM (2013) Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma. J Hazard Mater 262:664–673. https://doi.org/10.1016/j.jhazmat.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  29. Pankaj SK, Wan Z, Colonna W, Keener KM (2017) Effect of high voltage atmospheric cold plasma on white grape juice quality. J Sci Food Agric 97(12):4016–4021. https://doi.org/10.1002/jsfa.8268

    Article  CAS  PubMed  Google Scholar 

  30. Brayfield RS, Jassem A, Lauria MV, Fairbanks AJ, Keener KM, Garner AL (2018) Characterization of high voltage cold atmospheric plasma generation in sealed packages as a function of container material and fill gas. Plasma Chem Plasma Process 38(2):379–395. https://doi.org/10.1007/s11090-018-9872-8

    Article  CAS  Google Scholar 

  31. Pankaj SK, Bueno-Ferrer C, Misra N, O'Neill L, Jiménez A, Bourke P, Cullen P (2014) Surface, thermal and antimicrobial release properties of plasma-treated zein films. J Renew Mater 2(1):77–84

    Article  Google Scholar 

  32. Hedin J, Gumbel J, Stegman J, Witt G (2009) Use of O2 airglow for calibrating direct atomic oxygen measurements from sounding rockets. Atmos Meas Techn 2(2):801–812

    Article  CAS  Google Scholar 

  33. Khomich VY, Semenov AI, Shefov NN (2008) Airglow as an indicator of upper atmospheric structure and dynamics. Springer, Heidelberg

    Google Scholar 

  34. Walsh JL, Liu D-X, Iza F, Rong M-Z, Kong MG (2010) Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium–oxygen glow discharges. J Phys D 43(3):032001

    Article  Google Scholar 

  35. Giachardi D, Harris G, Wayne R (1976) Energy transfer from excited NO2* to molecular oxygen. J Chem Soc 72:619–630

    CAS  Google Scholar 

  36. Mahnot NK, Mahanta CL, Keener KM, Misra NN (2019) Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (HVACP). Food Chem 284:303–311. https://doi.org/10.1016/j.foodchem.2019.01.084

    Article  CAS  PubMed  Google Scholar 

  37. Xu L, Garner AL, Tao B, Keener KM (2017) Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Tech 10(10):1778–1791. https://doi.org/10.1007/s11947-017-1947-7

    Article  CAS  Google Scholar 

  38. Moiseev T, Misra NN, Patil S, Cullen PJ, Bourke P, Keener KM, Mosnier JP (2014) Post-discharge gas composition of a large-gap DBD in humid air by UV-Vis absorption spectroscopy. Plasma Sources Sci Technol 23(6):065033. https://doi.org/10.1088/0963-0252/23/6/065033

    Article  CAS  Google Scholar 

  39. Voráč J, Synek P, Potočňáková L, Hnilica J, Kudrle V (2017) Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet. Plasma Sources Sci Technol 26(2):025010. https://doi.org/10.1088/1361-6595/aa51f0

    Article  CAS  Google Scholar 

  40. Voráč J, Synek P, Procházka V, Hoder T (2017) State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface. J Phys D 50(29):294002. https://doi.org/10.1088/1361-6463/aa7570

    Article  CAS  Google Scholar 

  41. Walse SS, Karaca H (2011) Remediation of fungicide residues on fresh produce by use of gaseous ozone. Environ Sci Technol 45(16):6961–6969. https://doi.org/10.1021/es2006868

    Article  CAS  PubMed  Google Scholar 

  42. Liu W, Gan J, Papiernik SK, Yates SR (2000) Sorption and catalytic hydrolysis of diethatyl-ethyl on homoionic clays. J Agric Food Chem 48(5):1935–1940. https://doi.org/10.1021/jf990378k

    Article  CAS  PubMed  Google Scholar 

  43. Zhang P, Sun H, Yu L, Sun T (2013) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater 244–245:217–224. https://doi.org/10.1016/j.jhazmat.2012.11.046

    Article  CAS  PubMed  Google Scholar 

  44. Ren X, Zhang P, Zhao L, Sun H (2016) Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content. Environ Sci Pollut Res Int 23(3):2724–2734. https://doi.org/10.1007/s11356-015-5518-z

    Article  CAS  PubMed  Google Scholar 

  45. Misra NN, Keener KM, Bourke P, Cullen PJ (2015) Generation of in-package cold plasma and efficacy assessment using methylene blue. Plasma Chem Plasma Process 35(6):1043–1056. https://doi.org/10.1007/s11090-015-9638-5

    Article  CAS  Google Scholar 

  46. Oehmigen K, Winter J, Hähnel M, Wilke C, Brandenburg R, Weltmann K-D, von Woedtke T (2011) Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process Polym 8(10):904–913. https://doi.org/10.1002/ppap.201000099

    Article  CAS  Google Scholar 

  47. Gordillo-Vázquez FJ (2008) Air plasma kinetics under the influence of sprites. J Phys D 41(23):234016

    Article  Google Scholar 

  48. Sreekanth R (2014) Free radical chemistry of naphthol and its analogues: experimental and theoretical studies. Mahatma Gandhi University, Kerala

    Google Scholar 

  49. Wang Q, Lemley AT (2002) Oxidation of carbaryl in aqueous solution by membrane anodic fenton treatment. J Agric Food Chem 50(8):2331–2337. https://doi.org/10.1021/jf011434w

    Article  CAS  PubMed  Google Scholar 

  50. Anfossi L, Sales P, Vanni A (2006) Degradation of anilinopyrimidine fungicides photoinduced by iron(III)-polycarboxylate complexes. Pest Manage Sci 62(9):872–879. https://doi.org/10.1002/ps.1260

    Article  CAS  Google Scholar 

  51. Roberts TR, Hutson DH (1998) Metabolic pathways of agrochemicals: insecticides and fungicides, vol 1. Royal Society of Chemistry, Cambridge

    Google Scholar 

  52. Jeon D, Kim J, Shin J, Hidayat ZR, Na S, Lee Y (2016) Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential. J Hazard Mater 318:802–809. https://doi.org/10.1016/j.jhazmat.2016.06.039

    Article  CAS  PubMed  Google Scholar 

  53. Szabo L, Toth T, Racz G, Takacs E, Wojnarovits L (2016) Drugs with susceptible sites for free radical induced oxidative transformations: the case of a penicillin. Free Radic Res 50(1):26–38. https://doi.org/10.3109/10715762.2015.1100729

    Article  CAS  PubMed  Google Scholar 

  54. Cruz-Alcalde A, Sans C, Esplugas S (2017) Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement. Chemosphere 186:725–732. https://doi.org/10.1016/j.chemosphere.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  55. Tian F, Qiang Z, Liu W, Ling W (2013) Methiocarb degradation by free chlorine in water treatment: Kinetics and pathways. Chem Eng J 232:10–16. https://doi.org/10.1016/j.cej.2013.07.050

    Article  CAS  Google Scholar 

  56. Chiron S, Torres J, Fernandez-Alba A, Alpendurada M, Barcelo D (1996) Identification of carbofuran and methiocarb and their transformation products in estuarine waters by on-line solid phase extraction liquid chromatography—mass spectrometry. Int J Environ Anal Chem 65(1–4):37–52

    Article  CAS  Google Scholar 

  57. Qiang Z, Tian F, Liu W, Liu C (2014) Degradation of methiocarb by monochloramine in water treatment: kinetics and pathways. Water Res 50:237–244. https://doi.org/10.1016/j.watres.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  58. EPA (2018) U.S. Environmental Protection Agency, Office of Pesticide Programs, Label Review Manual, Chapter 7: Precautionary Labeling. https://www.epa.gov/pesticide-registration/label-review-manual. Accessed Sept 12, 2018

  59. HSDB (1992) Hazardous substances data bank (HSDB database): carbaryl. National Toxicology Information Program, National Library of Medicine, Bethesda

    Google Scholar 

  60. USEPA (1987) Carbaryl health advisory (Draft Report). Office of Drinking Water, Washington

    Google Scholar 

  61. O'Neil M, Smith A, Heckelman P, Obenchain J, Gallipeau A, D’Arecca M (2001) The merck index an encyclopedia of chemicals. Drugs and Biologicals Merck & Co Inc, Whitehouse Station

    Google Scholar 

  62. Verschueren K (2001) Handbook of environmental data on organic chemicals, 4th edn. Wiley, New York, NY

    Google Scholar 

  63. Lewis RJ, Irving N (2004) Sax's Dangerous Properties of Industrial Materials. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  64. EC (2002) European Comission. Evaluation and opinion on: Lawsone. Opinion of the scientific committee on cosmetic products and non-food products intended for consumers, SCCNFP/0583/02:5

  65. BUA (1994) Diethyl phthalate. German Chemical Society (GDCh) Advisory Committee on Existing Chemicals of Environmental Relevance (BUA), vol (BUA Report 104; original German version published in 1992). S. Hirge Verlag, Stuttgart

  66. EFSA (2006) Conclusion regarding the peer review of the pesticide risk assessment of the active substance methiocarb, European Food Safety Authority. EFSA J 79:1–82

    Google Scholar 

  67. Lewis RJS (2004) Sax's dangerous properties of industrial materials, 11th edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  68. Hartley D, Kidd H (1987) The agrochemicals handbook, 2nd edn. The Royal Society of Chemistry, Lechworth

    Google Scholar 

  69. Worthing CR, Walker SB (1987) The pesticide manual: a world compendium, 8th edn. British Crop Production Council, Alton

    Google Scholar 

  70. Tomlin CD (1994) The pesticide manual: a world compendium, 10th edn. The British Crop Production Council, Surrey

    Google Scholar 

  71. Meister R (1997) Farm chemicals handbook. Meister Publishing Co., Willoughby

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Misra.

Ethics declarations

Conflict of interest

Authors do not have any potential conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutiq, R., Pankaj, S.K., Wan, Z. et al. Atmospheric Pressure Cold Plasma as a Potential Technology to Degrade Carbamate Residues in Water. Plasma Chem Plasma Process 40, 1291–1309 (2020). https://doi.org/10.1007/s11090-020-10093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10093-z

Keywords

Navigation