Skip to main content
Log in

Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Tungsten sub-oxide (W17O47) nanoparticles were produced for the first time, via pulsed laser ablation of a pure tungsten target in distilled water. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength with 0.6, 0.8, 1.2 and 1.4 J/cm2 fluences was employed to irradiate the target. Produced nanoparticles were characterized using field emission scanning electron microscopy coupled with energy dispersive spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), UV–Vis absorption spectroscopy and room temperature Photoluminescence (PL). XRD patterns revealed that all samples possess the monoclinic structure corresponding to \({\mathrm{W}}_{17}{\mathrm{O}}_{47}\) phase. With increasing the laser fluence, the average size of the nanoparticles increased and subsequently, their band gap energy decreased. The PL spectra of the samples show the presence of oxygen vacancies or defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alaei, M., Mahjoub, A.R., Rashidi, A.: Preparation of different WO3 nanostructures and comparison of their ability for Congo red photo degradation. Iran J. Chem. Chem. Eng. 31, 31–36 (2012)

    Google Scholar 

  • Barreca, F., Acacia, N., Spadaro, S., Curro, G., Neri, F.: Tungsten trioxide (WO3− x) nanoparticles prepared by pulsed laser ablation in water. Mater. Chem. Phys. 127, 197–202 (2011)

    Article  Google Scholar 

  • Bishop, J.L., Pieters, C.M., Edwards, J.O.: Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner. 42, 702–716 (1994)

    Article  ADS  Google Scholar 

  • Brütsch, L., Czolk, J., Popescu, R., Gerthsen, D., Colsmann, A., Feldmann, C.: Surfactant-free synthesis of sub-stoichiometry tungsten oxide nanoparticles and their use as anode buffer layers in organic solar cells. Solid State Sci. 69, 50–55 (2017)

    Article  ADS  Google Scholar 

  • Chala, T., Wu, C.-M., Chou, M.-H., Gebeyehu, M., Cheng, K.-B.: Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 7, 191 (2017)

    Article  Google Scholar 

  • Chong, S., Ingham, B., Tallon, J.: Novel materials based on organic–tungsten oxide hybrid systems I: synthesis and characterisation. Curr. Appl. Phys. 4, 197–201 (2004)

    Article  Google Scholar 

  • Cong, S., Tian, Y., Li, Q., Zhao, Z., Geng, F.: Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260–4267 (2014)

    Article  Google Scholar 

  • Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn. Pearson, London (2014)

    Google Scholar 

  • Daniel, M., Desbat, B., Lassegues, J., Gerand, B., Figlarz, M.: Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 67, 235–247 (1987)

    Article  ADS  Google Scholar 

  • Dorranian, D., Solati, E., Dejam, L.: Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012)

    Article  ADS  Google Scholar 

  • Dwivedi, N., Kumar, S., Malik, H., Rauthan, C., Panwar, O.: Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films. Mater. Chem. Phys. 130, 775–785 (2011a)

    Article  Google Scholar 

  • Dwivedi, N., Kumar, S., Malik, H.K.: Nanostructured titanium/diamond-like carbon multilayer films: deposition, characterization, and applications. ACS Appl. Mater. Interfaces. 3, 4268–4278 (2011b)

    Article  Google Scholar 

  • Dwivedi, N., Kumar, S., Tripathi, R., Carey, J., Malik, H.K., Dalai, M.: Structural and electronic characterization of nanocrystalline diamondlike carbon thin films. ACS Appl. Mater. Interfaces. 4, 5309–5316 (2012)

    Article  Google Scholar 

  • Dwivedi, N., Kumar, S., Malik, H.K.: Role of base pressure on the structural and nano-mechanical properties of metal/diamond-like carbon bilayers. Appl. Surf. Sci. 274, 282–287 (2013)

    Article  ADS  Google Scholar 

  • Dwivedi, N., Kumar, S., Rawal, I., Malik, H.K.: Influence of consumed power on structural and nano-mechanical properties of nano-structured diamond-like carbon thin films. Appl. Surf. Sci. 300, 141–148 (2014)

    Article  ADS  Google Scholar 

  • Dwivedi, N., McIntosh, R., Dhand, C., Kumar, S., Malik, H.K., Bhattacharyya, S.: Structurally driven enhancement of resonant tunneling and nanomechanical properties in diamond-like carbon superlattices. ACS Appl. Mater. Interfaces. 7, 20726–20735 (2015)

    Article  Google Scholar 

  • Fakhari, M., Torkamany, M.J., Mirnia, S.N., Elahi, S.M.: UV-visible light-induced antibacterial and photocatalytic activity of half harmonic generator WO3 nanoparticles synthesized by pulsed laser ablation in water. Opt. Mater. 85, 491–499 (2018a)

    Article  ADS  Google Scholar 

  • Fakhari, M., Torkamany, M.J., Mirnia, S.N.: Linear and nonlinear optical properties of WO3 nanoparticles synthesized at different fluences of pulsed Nd: YAG laser. Eur. Phys. J. Appl. Phys. 84, 30401 (2018b)

    Article  ADS  Google Scholar 

  • Fukushi, D., Sasaki, A., Hirabayashi, H., Kitano, M.: Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase. Microelectron. Reliab. 79, 1–4 (2017)

    Article  Google Scholar 

  • Ghasemi, L., Jafari, H.: Morphological characterization of tungsten trioxide nanopowders synthesized by sol–gel modified pechini's method. Mater. Res. 20, 1713–1721 (2017)

    Article  Google Scholar 

  • Ghobadi, N.: Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013)

    Article  Google Scholar 

  • González-Borrero, P., Sato, F., Medina, A., Baesso, M.L., Bento, A.C., Baldissera, G., Persson, C., Niklasson, G.A., Granqvist, C.G., Ferreira da Silva, A.: Optical band-gap determination of nanostructured WO 3 film. Appl. Phys. Lett. 96, 061909 (2010)

    Article  ADS  Google Scholar 

  • Gotić, M., Ivanda, M., Popović, S., Musić, S.: Synthesis of tungsten trioxide hydrates and their structural properties. Mater. Sci. Eng., B 77, 193–201 (2000)

    Article  Google Scholar 

  • Granqvist, C.G.: Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201–262 (2000)

    Article  Google Scholar 

  • Gullapalli, S., Vemuri, R., Ramana, C.: Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films. Appl. Phys. Lett. 96, 171903 (2010)

    Article  ADS  Google Scholar 

  • Guo, C., Yin, S., Dong, Q., Sato, T.: The near infrared absorption properties of W 18 O 49. RSC Adv. 2, 5041–5043 (2012)

    Article  Google Scholar 

  • He, T., Yao, J.: Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007)

    Article  Google Scholar 

  • Isaac, N.A., Valenti, M., Schmidt-Ott, A., Biskos, G.: Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Appl. Mater. Interfaces. 8, 3933–3939 (2016)

    Article  Google Scholar 

  • Ishida, Y., Motono, S., Doshin, W., Tokunaga, T., Tsukamoto, H., Yonezawa, T.: Small nanosized oxygen-deficient tungsten oxide particles: mechanistic investigation with controlled plasma generation in water for their preparation. ACS Omega 2, 5104–5110 (2017)

    Article  Google Scholar 

  • Kim, E., Jiang, Z.-T., No, K.: Measurement and calculation of optical band gap of chromium aluminum oxide films. Jpn. J. Appl. Phys. 39, 4820 (2000)

    Article  ADS  Google Scholar 

  • Kim, M., Lee, B.Y., Ham, H.C., Han, J., Nam, S.W., Lee, H.-S., Park, J.H., Choi, S., Shin, Y.: Facile one-pot synthesis of tungsten oxide (WO3− x) nanoparticles using sub and supercritical fluids. J. Supercrit. Fluids 111, 8–13 (2016)

    Article  Google Scholar 

  • Kumar, V.B., Mohanta, D.: Formation of nanoscale tungsten oxide structures and colouration characteristics. Bull. Mater. Sci. 34, 435–442 (2011)

    Article  Google Scholar 

  • Lavanya, N., Anithaa, A., Sekar, C., Asokan, K., Bonavita, A., Donato, N., Leonardi, S., Neri, G.: Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. J. Alloy. Compd. 693, 366–372 (2017)

    Article  Google Scholar 

  • Lee, K., Seo, W.S., Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408–3409 (2003)

    Article  Google Scholar 

  • Mansoureh, G., Parisa, V.: Synthesis of Metal Nanoparticles Using Laser Ablation Technique, Emerging Applications of Nanoparticles and Architecture Nanostructures, pp. 575–596. Elsevier, Amsterdam (2018)

    Book  Google Scholar 

  • Moradi, M., Solati, E., Darvishi, S., Dorranian, D.: Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Cluster Sci. 27, 127–138 (2016)

    Article  Google Scholar 

  • Mostafa, A.M., Yousef, S.A., Eisa, W.H., Ewaida, M.A., Al-Ashkar, E.A.: WO3 quantum dot: synthesis, characterization and catalytic activity. J. Mol. Struct. 1185, 351–356 (2019)

    Article  ADS  Google Scholar 

  • Pankove, J.I.: Optical Processes in Semiconductors, 2nd edn. Courier Corporation, Chelmsford (2010)

    Google Scholar 

  • Petit, T., Puskar, L.: FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. (2018). https://doi.org/10.1016/j.diamond.2018.08.005

    Article  Google Scholar 

  • Petit, T., Puskar, L., Dolenko, T., Choudhury, S., Ritter, E., Burikov, S., Laptinskiy, K., Brzustowski, Q., Schade, U., Yuzawa, H.: Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121, 5185–5194 (2017)

    Article  Google Scholar 

  • Popov, A., Zholobak, N., Balko, O., Balko, O., Shcherbakov, A., Popova, N., Ivanova, O., Baranchikov, A., Ivanov, V.: Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J. Photochem. Photobiol. B 178, 395–403 (2018)

    Article  Google Scholar 

  • Ragunathan, A., Krishnan, R., Kamaludeen, B.A.: Stability of tungsten oxide nanoparticles in different media. J. Chem. Res. 39, 622–626 (2015)

    Article  Google Scholar 

  • Schieder, M., Lunkenbein, T., Martin, T., Milius, W., Auffermann, G., Breu, J.: Hierarchically porous tungsten oxide nanotubes with crystalline walls made of the metastable orthorhombic polymorph. J. Mater. Chem. A 1, 381–387 (2013)

    Article  Google Scholar 

  • Sekhon, J.S., Malik, H.K., Verma, S.: Tailoring surface plasmon resonance wavelengths and sensoric potential of core–shell metal nanoparticles. Sens. Lett. 11, 512–518 (2013a)

    Article  Google Scholar 

  • Sekhon, J.S., Malik, H.K., Verma, S.: DDA simulations of noble metal and alloy nanocubes for tunable optical properties in biological imaging and sensing. RSC adv. 3, 15427–15434 (2013b)

    Article  Google Scholar 

  • Shah, M., Muzyyan, N., Hazratbal, S.: A novel approach for the synthesis of tungsten trioxide nanostructures. J. King Abdulaziz Univ. Sci. 21, 109–115 (2009)

    Article  Google Scholar 

  • Shenderova, O., Panich, A., Moseenkov, S., Hens, S., Kuznetsov, V., Vieth, H.-M.: Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies. J. Phys. Chem. C 115, 19005–19011 (2011)

    Article  Google Scholar 

  • Solati, E., Dorranian, D.: Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci. 26, 727–742 (2015)

    Article  Google Scholar 

  • Solati, E., Dorranian, D.: Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl. Phys. B 122, 76 (2016a)

    Article  ADS  Google Scholar 

  • Solati, E., Dorranian, D.: Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci. 39, 1677–1684 (2016b)

    Article  Google Scholar 

  • Stehlik, S., Glatzel, T., Pichot, V., Pawlak, R., Meyer, E., Spitzer, D., Rezek, B.: Water interaction with hydrogenated and oxidized detonation nanodiamonds—Microscopic and spectroscopic analyses. Diam. Relat. Mater. 63, 97–102 (2016)

    Article  ADS  Google Scholar 

  • Supothina, S., Seeharaj, P., Yoriya, S., Sriyudthsak, M.: Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931–936 (2007)

    Article  Google Scholar 

  • Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    Article  ADS  Google Scholar 

  • Tiwari, A., Gong, S.: Electrochemical synthesis of Chitosan-co-polyaniline/WO3⋅ nH2O composite electrode for amperometric detection of NO2 Gas. Electroanal.: Int. J. Devot. Fundam. Pract. Asp. Electroanal. 20, 1775–1781 (2008)

    Article  Google Scholar 

  • Viezbicke, B.D., Patel, S., Davis, B.E., Birnie, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 252, 1700–1710 (2015)

    Article  ADS  Google Scholar 

  • Wang, Y., Wang, X., Xu, Y., Chen, T., Liu, M., Niu, F., Wei, S., Liu, J.: Simultaneous synthesis of wo3− x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small 13, 1603689 (2017)

    Article  Google Scholar 

  • Wasmi, B.A., Al-Amiery, A.A., Kadhum, A.A.H., Mohamad, A.B.: Novel approach: tungsten oxide nanoparticle as a catalyst for malonic acid ester synthesis via ozonolysis. J. Nanomater. 2014, 2 (2014)

    Article  Google Scholar 

  • Yahiaoui, K., Kerdja, T., Malek, S.: Phase explosion in tungsten target under interaction with Nd: YAG laser tripled in frequency. Surf. Interface Anal. 42, 1299–1302 (2010)

    Article  Google Scholar 

  • Yamazaki, S., Shimizu, D., Tani, S., Honda, K., Sumimoto, M., Komaguchi, K.: Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose. ACS Appl. Mater. Interfaces 10, 19889–19896 (2018)

    Article  Google Scholar 

  • Zamiranvari, A., Solati, E., Dorranian, D.: Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation. Opt. Laser Technol. 97, 209–218 (2017)

    Article  ADS  Google Scholar 

  • Zhan, Y., Liu, Y., Liu, Q., Liu, Z., Yang, H., Lei, B., Zhuang, J., Hu, C.: Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal strategy for ferric ions detection and bioimaging. Sens. Actuators B Chem. 255, 290–298 (2018)

    Article  Google Scholar 

  • Zhao, Z., Bai, Y., Ning, W., Fan, J., Gu, Z., Chang, H., Yin, S.: Effect of surfactants on the performance of 3D morphology W18O49 by solvothermal synthesis. Appl. Surf. Sci. 471, 537–544 (2019)

    Article  ADS  Google Scholar 

  • Zheng, H., Ou, J.Z., Strano, M.S., Kaner, R.B., Mitchell, A., Kalantar-zadeh, K.: Nanostructured tungsten oxide–properties, synthesis, and applications. Adv. Func. Mater. 21, 2175–2196 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Famili, Z., Dorranian, D. & Sari, A.H. Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence. Opt Quant Electron 52, 305 (2020). https://doi.org/10.1007/s11082-020-02425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02425-2

Keywords

Navigation