Skip to main content

Advertisement

Log in

Formation of CuCo Alloy From Their Oxide Mixtures Through Reduction by Low-Temperature Hydrogen Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Experimental results of a new method of production of CuCo alloy of composition 95Cu–5Co from the reduction of the mixture of cupric oxide (CuO) and cobalt oxide (Co3O4) is presented. It uses low-temperature hydrogen plasma which in turn is created in a microwave assisted plasma set-up. The microwave power and hydrogen flow-rate used in this investigation are 750 W and 2.5 × 10−6 m3 s−1 respectively. Co3O4 reduced faster than CuO. The reduced molar volume of Co3O4 provided more space for hydrogen penetration. The addition of Co3O4 to CuO, not only removed the induction period from the kinetic plot of CuO reduction but also, improved the reduction rate of CuO. The kinetic data fits the Avrami model of nucleation and growth with a model parameter closer to 1.5. The alloy showed positive deviation from Vegard’s law. The crystallite size, calculated by applying Scherrer’s formula lies in the range of 21.5–30.7 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiao K, Qi X, Bao Z et al (2013) CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas: a comparative study. Catal Sci Technol 3:1591–1602. https://doi.org/10.1039/c3cy00063j

    Article  CAS  Google Scholar 

  2. Bonetti E, Del Bianco L, Savini L et al (1999) Structural configuration and magnetic properties of the rapidly solidified CuCo alloy. Nanostruct Mater 12:891–894. https://doi.org/10.1016/s0965-9773(99)00260-3

    Article  Google Scholar 

  3. Aizawa T, Zhou C (2000) Nanogranulation process into magneto-resistant Co–Cu alloy on the route of bulk mechanical alloying. Mater Sci Eng A 285:1–7. https://doi.org/10.1016/s0921-5093(00)00709-7

    Article  Google Scholar 

  4. Gómez E, Labarta A, Llorente A, Vallés E (2002) Characterisation of cobalt/copper multilayers obtained by electrodeposition. Surf Coat Technol 153:261–266. https://doi.org/10.1016/s0257-8972(01)01698-x

    Article  Google Scholar 

  5. Tochitskii TA, Jones GA, Blythe HJ et al (2001) Fine structure and possible growth mechanisms of some electrodeposited CuCo granular films. J Magn Magn Mater 224:221–232. https://doi.org/10.1016/s0304-8853(01)00038-5

    Article  CAS  Google Scholar 

  6. Kuang M, Han P, Wang Q et al (2016) CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting. Adv Funct Mater 26:8555–8561. https://doi.org/10.1002/adfm.201604804

    Article  CAS  Google Scholar 

  7. Yang Y, Qi X, Wang X et al (2016) Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas. Catal Today 270:101–107. https://doi.org/10.1016/j.cattod.2015.06.014

    Article  CAS  Google Scholar 

  8. Allia P, Coisson M, Tiberto P et al (1999) Magnetic hysteresis in granular CuCo alloys. J Appl Phys 85:4343. https://doi.org/10.1063/1.370362

    Article  CAS  Google Scholar 

  9. Mader S, Widmer H, d’Heurle FM, Nowick AS (1963) Metastable alloys of CuCo and CuAg thin films deposited in vacuum. Appl Phys Lett 3:201–203. https://doi.org/10.1063/1.1753848

    Article  Google Scholar 

  10. Tavares Figueiredo R, López Granados M, Fierro JLG et al (1998) Preparation of alumina-supported CuCo catalysts from cyanide complexes and their performance in CO hydrogenation. Appl Catal A Gen 170:145–157. https://doi.org/10.1016/s0926-860x(98)00037-4

    Article  CAS  Google Scholar 

  11. Fedosyuk VM, Schwarzacher W, Kasyutich OI, Tochitsky TA (1998) Granular CuCo nanowires. Metallofiz i Noveishie Tekhnologii 20:65–70

    CAS  Google Scholar 

  12. Muzikansky A, Nanikashvili P, Grinblat J, Zitoun D (2013) Ag dewetting in Cu@Ag monodisperse core–shell nanoparticles. J Phys Chem C 117:3093–3100. https://doi.org/10.1021/jp3109545

    Article  CAS  Google Scholar 

  13. Rocha AL, Solórzano IG, Vander Sande JB (2007) Heterogeneous and homogeneous nanoscale precipitation in dilute Cu–Co alloys. Mater Sci Eng C 27:1215–1221. https://doi.org/10.1016/j.msec.2006.08.032

    Article  CAS  Google Scholar 

  14. Suehiro K, Nishimura S, Horita Z et al (2008) High-pressure torsion for production of magnetoresistance in Cu–Co alloy. J Mater Sci 43:7349–7353. https://doi.org/10.1007/s10853-008-2813-9

    Article  CAS  Google Scholar 

  15. Miranda MGM, Estévez-Rams E, Martínez G, Baibich MN (2003) Phase separation in Cu90Co10 high-magnetoresistance materials. Phys Rev B 68:014434. https://doi.org/10.1103/physrevb.68.014434

    Article  Google Scholar 

  16. Berkowitz AE, Mitchell JR, Carey MJ et al (1992) Giant magnetoresistance in heterogeneous Cu–Co alloys. Phys Rev Lett 68:3745–3748. https://doi.org/10.1103/physrevlett.68.3745

    Article  CAS  PubMed  Google Scholar 

  17. Childress JR, Chien CL (1991) Reentrant magnetic behavior in fcc Co–Cu alloys. Phys Rev B 43:8089–8093. https://doi.org/10.1103/physrevb.43.8089

    Article  CAS  Google Scholar 

  18. Gangopadhyay S, Hadjipanayis GC, Sorensen CM, Klabunde KJ (1992) Magnetic properties of ultrafine Co particles. IEEE Trans Magn 28:3174–3176. https://doi.org/10.1109/20.179749

    Article  CAS  Google Scholar 

  19. Yu RH, Zhang XX, Tejada J et al (1996) Structure, magnetic properties, and giant magnetoresistance in melt-spun metallic copper–cobalt ribbons. J Appl Phys 79:1979–1990. https://doi.org/10.1063/1.361049

    Article  CAS  Google Scholar 

  20. I.H.Karahan OFBMB (2007) Giant magnetoresistance of electrodeposited Cu–Co–Ni alloy films. Pramana J Phys 68:83–90

    Article  Google Scholar 

  21. Dang J, Chou KC, Hu XJ, Zhang GH (2013) Reduction kinetics of metal oxides by hydrogen. Steel Res Int 84:526–533. https://doi.org/10.1002/srin.201200242

    Article  CAS  Google Scholar 

  22. Hickey BJ, Howson MA, Musa SO, Wiser N (1995) Giant magnetoresistance for superparamagnetic particles: melt-spun granular CuCo. Phys Rev B 51:667–669. https://doi.org/10.1103/physrevb.51.667

    Article  CAS  Google Scholar 

  23. Fedosyuk VM, Kasyutich OI, Ravinder D, Blythe HJ (1996) Giant magnetoresistance in granular electrodeposited CuCo films. J Magn Magn Mater 156:345–346. https://doi.org/10.1016/0304-8853(95)00893-4

    Article  CAS  Google Scholar 

  24. Allia P, Baricco M, Knobel M et al (1995) Giant magnetoresistance in Joule heated CuCo ribbons. J Magn Magn Mater 140–144:617–618. https://doi.org/10.1016/0304-8853(94)01514-7

    Article  Google Scholar 

  25. Lin Z, Zhan-guo F (2009) Giant magnetoresistance and microstructure in CuCo granular flims prepared by electrodeposition. In: The materials society annual meeting, pp 19–26

  26. Turgut Z, Horwath JC, Fingers RT (2008) Powder metallurgy processing of high-strength FeCo alloys. Power Div (preprint)

  27. Parhi BR, Sahoo SK, Mishra SC et al (2016) Upgradation of bauxite by molecular hydrogen and hydrogen plasma. Int J Miner Metall Mater 23:1141–1149. https://doi.org/10.1007/s12613-016-1333-x

    Article  CAS  Google Scholar 

  28. Parhi BR, Sahoo SK, Sahu M et al (2017) Physico-chemical investigations of high iron bauxite for application of refractive and ceramics. Metall Res Technol 114:307. https://doi.org/10.1051/metal/2017025

    Article  CAS  Google Scholar 

  29. Moustafa AF (2017) Isothermal reduction process and kinetic of nanomaterials in reducing atmosphere: a review. J Anal Appl Pyrolysis 127:126–139. https://doi.org/10.1016/j.jaap.2017.08.015

    Article  CAS  Google Scholar 

  30. Luo SD, Qian M (2018) Microwave processing of titanium and titanium alloys for structural, biomedical and shape memory applications: current status and challenges. Mater Manuf Process 33:35–49. https://doi.org/10.1080/10426914.2016.1257800

    Article  CAS  Google Scholar 

  31. Furuyama K, Yamanaka K, Higurashi E, Suga T (2018) Evaluation of hydrogen radical treatment for indium surface oxide removal and analysis of re-oxidation behavior. Jpn J Appl Phys 57:02BC01. https://doi.org/10.7567/jjap.57.02bc01

    Article  CAS  Google Scholar 

  32. Di L, Zhang J, Zhang X (2018) A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process Polym 15:1700234. https://doi.org/10.1002/ppap.201700234

    Article  CAS  Google Scholar 

  33. Römermann H, Müller A, Bomhardt K et al (2018) Formation of metal (nano-)particles in drying latex films by means of a reducing plasma: a route to auto-stratification. J Phys D Appl Phys 51:215205. https://doi.org/10.1088/1361-6463/aabf2c

    Article  CAS  Google Scholar 

  34. Sener ME, Caruana DJ (2018) Modulation of copper(I) oxide reduction/oxidation in atmospheric pressure plasma jet. Electrochem Commun 95:38–42. https://doi.org/10.1016/j.elecom.2018.08.014

    Article  CAS  Google Scholar 

  35. Fedorovich OA, Hladkovskyi VV, Polozov BP et al (2018) Peculiarities of interaction of low-energy protons with tungsten surface. Probl At Sci Technol 116:302–306

    Google Scholar 

  36. Tennyson J, Rahimi S, Hill C et al (2017) QDB: a new database of plasma chemistries and reactions. Plasma Sources Sci, Technol, p 26

    Google Scholar 

  37. Parhi BR, Sahoo SK, Bhoi B et al (2016) Application of hydrogen for the reduction of bauxite mineral. In: IOP conference series: materials science and engineering

  38. Mandal AK, Dishwar RK, Sinha OP (2018) Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies. Plasma Sci Technol 20:035506. https://doi.org/10.1088/2058-6272/aa9cde

    Article  CAS  Google Scholar 

  39. Ji G, Smart S, Bhatia SK, Diniz da Costa JC (2015) Improved pore connectivity by the reduction of cobalt oxide silica membranes. Sep Purif Technol 154:338–344. https://doi.org/10.1016/j.seppur.2015.09.065

    Article  CAS  Google Scholar 

  40. Mandal AK, Dishwar RK, Sinha OP (2018) Design, fabrication, and characterization of an indigenously fabricated prototype transferred arc plasma furnace. IEEE Trans Plasma Sci 46:1793–1799. https://doi.org/10.1109/tps.2018.2817234

    Article  CAS  Google Scholar 

  41. Elg DT, Panici GA, Liu S et al (2018) Removal of tin from extreme ultraviolet collector optics by in-situ hydrogen plasma etching. Plasma Chem Plasma Process 38:223–245. https://doi.org/10.1007/s11090-017-9852-4

    Article  CAS  Google Scholar 

  42. Altmannshofer S, Eisele I, Gschwandtner A (2016) Hydrogen microwave plasma treatment of Si and SiO2. Surf Coat Technol 304:359–363. https://doi.org/10.1016/j.surfcoat.2016.07.038

    Article  CAS  Google Scholar 

  43. Vesel A, Drenik A, Mozeti M (2013) Removing of oxides from Fe–Ni alloys by hydrogen plasma treatment. In: International conference nuclear energy for new Europe 2007, pp 1–4

  44. Mozetič M, Vesel A, Kovač J et al (2015) Formation and reduction of thin oxide films on a stainless steel surface upon subsequent treatments with oxygen and hydrogen plasma. Thin Solid Films 591:186–193. https://doi.org/10.1016/j.tsf.2015.02.007

    Article  CAS  Google Scholar 

  45. Vesel A, Mozetič M, Balat-Pichelin M (2015) Sequential oxidation and reduction of tungsten/tungsten oxide. Thin Solid Films 591:174–181. https://doi.org/10.1016/j.tsf.2015.02.019

    Article  CAS  Google Scholar 

  46. Vesel A, Mozetic M, Balat-Pichelin M (2016) Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma. Appl Surf Sci 387:1140–1146. https://doi.org/10.1016/j.apsusc.2016.06.098

    Article  CAS  Google Scholar 

  47. Badin V, Diamanti E, Forêt P et al (2015) Design of stainless steel porous surfaces by oxide reduction with hydrogen. Mater Des 86:765–770. https://doi.org/10.1016/j.matdes.2015.07.142

    Article  CAS  Google Scholar 

  48. Pradhan SK, Jeevitha M, Singh SK (2015) Plasma cleaning of old Indian coin in H2–Ar atmosphere. Appl Surf Sci 357:445–451. https://doi.org/10.1016/j.apsusc.2015.09.026

    Article  CAS  Google Scholar 

  49. Lee JH, Kang DS, Moon MK, Hong SK (2016) Separating technology of pure zirconia from zircon-sand by the Ar–H2 arc plasma fusion and the microwave leaching. Mater Sci Forum 879:1080–1085. https://doi.org/10.4028/www.scientific.net/MSF.879.1080

    Article  Google Scholar 

  50. Sabat KC, Rajput P, Paramguru RK et al (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34:1–23. https://doi.org/10.1007/s11090-013-9484-2

    Article  CAS  Google Scholar 

  51. Rajput P, Sabat KC, Paramguru RK et al (2014) Direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 41:721–731. https://doi.org/10.1179/1743281214y.0000000186

    Article  CAS  Google Scholar 

  52. Sabat KC, Paramguru RK, Pradhan S, Mishra BK (2015) Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem Plasma Process 35:387–399. https://doi.org/10.1007/s11090-014-9602-9

    Article  CAS  Google Scholar 

  53. Sabat KC, Paramguru RK, Mishra BK (2016) Reduction of copper oxide by low-temperature hydrogen plasma. Plasma Chem Plasma Process 36:1111–1124. https://doi.org/10.1007/s11090-016-9710-9

    Article  CAS  Google Scholar 

  54. Sabat KC, Paramguru RK, Mishra BK (2017) Reduction of oxide mixtures of (Fe2O3 + CuO) and (Fe2O3 + Co3O4) by low-temperature hydrogen plasma. Plasma Chem Plasma Process 37:979–995. https://doi.org/10.1007/s11090-017-9818-6

    Article  CAS  Google Scholar 

  55. Sabat KC, Murphy AB (2017) Hydrogen plasma processing of iron ore. Metall Mater Trans B 48:1561–1594. https://doi.org/10.1007/s11663-017-0957-1

    Article  CAS  Google Scholar 

  56. Sabat KC, Paramguru RK, Mishra BK (2018) Formation of copper–nickel alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma. Plasma Chem Plasma Process 38:621–635. https://doi.org/10.1007/s11090-018-9880-8

    Article  CAS  Google Scholar 

  57. ASM International (2004) Alloy phase diagrams, vol 3. ASM handbook. ASM International, Russell Township

    Google Scholar 

  58. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams, ​2nd edn. ASM International, Materials Park, OH, ISBN: 978-0-87170-403-0 

  59. Nishizawa T, Ishida K (1984) The Co–Cu (Cobalt–Copper) system. Bull Alloys Phase Diagr 5:161–165. https://doi.org/10.1007/bf02868953

    Article  CAS  Google Scholar 

  60. Straumal BB, Kilmametov AR, Ivanisenko Y et al (2014) Phase transitions during high pressure torsion of CuCo alloys. Mater Lett 118:111–114. https://doi.org/10.1016/j.matlet.2013.12.042

    Article  CAS  Google Scholar 

  61. Bachmaier A, Aboulfadl H, Pfaff M et al (2015) Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography. Mater Charact 100:178–191. https://doi.org/10.1016/j.matchar.2014.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kormout KS, Pippan R, Bachmaier A (2017) Deformation-induced supersaturation in immiscible material systems during high-pressure torsion. Adv Eng Mater 19:1–19. https://doi.org/10.1002/adem.201600675

    Article  CAS  Google Scholar 

  63. Gente C, Oehring M, Bormann R (1993) Formation of thermodynamically unstable solid solutions in the Cu–Co system by mechanical alloying. Phys Rev B 48:13244–13252. https://doi.org/10.1103/physrevb.48.13244

    Article  CAS  Google Scholar 

  64. Froes FH, Senkov ON, Baburaj EG (2001) Synthesis of nanocrystalline materials—an overview. Mater Sci Eng A 301:44–53. https://doi.org/10.1016/s0921-5093(00)01391-5

    Article  Google Scholar 

  65. Busch R, Gärtner F, Borchers C et al (1996) High resolution microstructure analysis of the decomposition of Cu90Co10 alloys. Acta Mater 44:2567–2579. https://doi.org/10.1016/1359-6454(95)00370-3

    Article  CAS  Google Scholar 

  66. Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry. Pergamon Press, Oxford

    Google Scholar 

  67. Chase M (1998) NIST–JANAF thermochemical tables. In: Journal of Physical and Chemical Reference Data, Monograph, 4th edn, vol 9, p 1952

  68. Ragone DV (1995) Thermodynamics of materials, vol 1. Wiley, Hoboken

    Google Scholar 

  69. Hassouni K, Gicquel A, Capitelli M, Loureiro J (1999) Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes. Plasma Sources Sci Technol 8:494–512. https://doi.org/10.1088/0963-0252/8/3/320

    Article  CAS  Google Scholar 

  70. Cullity SR, Stock BD (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle River

    Google Scholar 

  71. Suryanarayana C, Norton MG (1998) X-rays and diffraction. Springer, Boston

    Book  Google Scholar 

  72. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134. https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  73. Rodriguez JA, Kim JY, Hanson JC et al (2003) Reduction of CuO in H2: in situ time-resolved XRD studies. Catal Lett 85:247–254. https://doi.org/10.1023/a:1022110200942

    Article  CAS  Google Scholar 

  74. Kim JY, Rodriguez A, Hanson JC et al (2003) Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc 125(35):10684–10692

    Article  CAS  PubMed  Google Scholar 

  75. Wang H, Huang Y, Tan Z, Hu X (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13–17. https://doi.org/10.1016/j.aca.2004.08.060

    Article  CAS  Google Scholar 

  76. Gupta S, Gartley M (1999) XRD and VSM analysis of nanostructured Cu–Co alloys. JCPDS—International Centre Diffraction Data, pp 688–697. http://www.icdd.com/resources/axa/vol41/v41_75.pdf

  77. Piotrowski K, Mondal K, Wiltowski T et al (2007) Topochemical approach of kinetics of the reduction of hematite to wustite. Chem Eng J 131:73–82. https://doi.org/10.1016/j.cej.2006.12.024

    Article  CAS  Google Scholar 

  78. Wang H, Sohn HY (2013) Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B Process Metall Mater Process Sci 44:133–145. https://doi.org/10.1007/s11663-012-9754-z

    Article  CAS  Google Scholar 

  79. Chen F, Mohassab Y, Jiang T, Sohn HY (2015) Hydrogen reduction kinetics of hematite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B 46:1133–1145. https://doi.org/10.1007/s11663-015-0332-z

    Article  CAS  Google Scholar 

  80. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  81. Jacob KT, Raj S, Rannesh L (2007) Vegard’s law: a fundamental relation or an approximation? Int J Mater Res 98:776–779. https://doi.org/10.3139/146.101545

    Article  CAS  Google Scholar 

  82. King HW (1966) Quantitative size-factors for metallic solid solutions. J Mater Sci 1:79–90. https://doi.org/10.1007/bf00549722

    Article  CAS  Google Scholar 

  83. Lubarda VA (2003) On the effective lattice parameter of binary alloys. Mech Mater 35:53–68

    Article  Google Scholar 

  84. Turchanin MA, Agraval PG (2007) Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper-cobalt system. Powder Metall Met Ceram 46:77–89. https://doi.org/10.1007/s11106-007-0013-9

    Article  CAS  Google Scholar 

  85. Gaskell DR, Laughlin DE (2018) Introduction to the thermodynamics of materials, 6th edn. CRC Press, New York

    Google Scholar 

Download references

Acknowledgements

I am thankful to Prof. (Dr.) Barada Kanta Mishra, Director, Indian Institute of Technology Goa, India, and Prof. (Dr.) Raja Kishore Paramguru, Professor in School of Mechanical Engineering, KIIT University, Bhubaneswar, India, for their constructive technical advice. I would also like to thank CSIR, New Delhi for providing financial support to carry out research work under the project MINMET, Project No. ESC 205. I am immensely grateful to the reviewers for their so-called insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kali Charan Sabat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabat, K.C. Formation of CuCo Alloy From Their Oxide Mixtures Through Reduction by Low-Temperature Hydrogen Plasma. Plasma Chem Plasma Process 39, 1071–1086 (2019). https://doi.org/10.1007/s11090-019-09963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09963-y

Keywords

Navigation