Skip to main content

Advertisement

Log in

Hydrogen Production from Methane Decomposition Using a Mobile and Elongating Arc Plasma Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Hydrogen and solid carbon were produced through methane decomposition in a plasma reactor with a parallel set of screw type helix and rod-like electrodes. The novel configuration led to the 3-dimensional movement of plasma zone in the axial and angular directions as well as arc elongation. The effect of arc elongation and movement at various angular velocities of high voltage electrode was investigated on the reactor performance in terms of methane conversion, hydrogen yield, and energy yield. In addition, the influence of fluid flow direction was considered. Methane conversion of 47% and hydrogen production rate of 132.7 ml/min with the energy yield of 36.8 g/kWh were achieved at stable operating conditions. The deposition rate of carbon was 35 mg/min which had a graphite-like structure. A reaction pathway is proposed according to reaction path analysis in order to interpret the underlying plasma chemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Khoja AH, Tahir M, Amin NAS (2017) Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations. Energy Convers Manag 144:262–274

    Article  CAS  Google Scholar 

  2. Khalifeh O, Taghvaei H, Mosallanejad A, Rahimpour MR, Shariati A (2016) Extra pure hydrogen production through methane decomposition using nanosecond pulsed plasma and Pt–Re catalyst. Chem Eng J 294:132–145

    Article  CAS  Google Scholar 

  3. Cho DL, Kim H-N, Lee M, Cho E (2015) Production of pure hydrogen from methane by low temperature plasma processing. Korean J Chem Eng 32(12):2519–2523. https://doi.org/10.1007/s11814-015-0107-x

    Article  CAS  Google Scholar 

  4. Moshrefi MM, Rashidi F (2014) Hydrogen production from methane by DC spark discharge: effect of current and voltage. J Nat Gas Sci Eng 16:85–89

    Article  CAS  Google Scholar 

  5. Mizeraczyk J, Jasiński M (2016) Plasma processing methods for hydrogen production. Eur Phys J Appl Phys 75(2):24702

    Article  CAS  Google Scholar 

  6. Mizeraczyk J, Urashima K, Jasiński M, Dors M (2014) Hydrogen production from gaseous fuels by plasmas-a review. Int J Plasma Env Sci Technol 8(2):89–97

    Google Scholar 

  7. Ibrahim AA, Fakeeha AH, Al-Fatesh AS, Abasaeed AE, Khan WU (2015) Methane decomposition over iron catalyst for hydrogen production. Int J Hydrog Energy 40(24):7593–7600

    Article  CAS  Google Scholar 

  8. Moshrefi MM, Rashidi F, Bozorgzadeh HR (2015) Use of a DC discharge in a plasma reactor with a rotating ground electrode for production of synthesis gas by partial oxidation of methane. Res Chem Intermed 41(9):5941–5959

    Article  CAS  Google Scholar 

  9. Ghorbanzadeh A, Matin N (2005) Methane conversion to hydrogen and higher hydrocarbons by double pulsed glow discharge. Plasma Chem Plasma Process 25(1):19–29

    Article  CAS  Google Scholar 

  10. Li D, Li X, Bai M, Tao X, Shang S, Dai X, Yin Y (2009) CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrog Energy 34(1):308–313

    Article  CAS  Google Scholar 

  11. Aleknaviciute I, Karayiannis T, Collins M, Xanthos C (2013) Methane decomposition under a corona discharge to generate COx-free hydrogen. Energy 59:432–439

    Article  CAS  Google Scholar 

  12. Horvath G, Zahoran M, Mason N, Matejcik S (2011) Methane decomposition leading to deposit formation in a DC positive CH4–N2 corona discharge. Plasma Chem Plasma Process 31(2):327–335

    Article  CAS  Google Scholar 

  13. Kundu SK, Kennedy EM, Gaikwad VV, Molloy TS, Dlugogorski BZ (2012) Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chem Eng J 180:178–189

    Article  CAS  Google Scholar 

  14. Kim TK, Lee WG (2012) Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system. J Ind Eng Chem 18(5):1710–1714

    Article  CAS  Google Scholar 

  15. Li XD, Zhang H, Yan SX, Yan JH, Du CM (2013) Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor. IEEE Trans Plasma Sci 41(1):126–132

    Article  CAS  Google Scholar 

  16. Zhang H, Du C, Wu A, Bo Z, Yan J, Li X (2014) Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int J Hydrog Energy 39(24):12620–12635

    Article  CAS  Google Scholar 

  17. Zhang H, Wang W, Li X, Han L, Yan M, Zhong Y, Tu X (2018) Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study. Chem Eng J 345:67–78

    Article  CAS  Google Scholar 

  18. Rahim I, Nomura S, Mukasa S, Toyota H (2015) Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods. Appl Therm Eng 90:120–126

    Article  CAS  Google Scholar 

  19. Mizeraczyk J, Jasiński M, Nowakowska H, Dors M (2012) Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika 57:241–247

    CAS  Google Scholar 

  20. Chung W-C, Chang M-B (2016) Dry reforming of methane by combined spark discharge with a ferroelectric. Energy Convers Manag 124:305–314

    Article  CAS  Google Scholar 

  21. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Haghighi ME (2013) Dry reforming of methane by DC spark discharge with a rotating electrode. Plasma Chem Plasma Process 33(2):453–466

    Article  CAS  Google Scholar 

  22. Li X-S, Lin C-K, Shi C, Xu Y, Wang Y-N, Zhu A-M (2008) Stable kilohertz spark discharges for high-efficiency conversion of methane to hydrogen and acetylene. J Phys D Appl Phys 41(17):175203

    Article  CAS  Google Scholar 

  23. Lee DH, Song Y-H, Kim K-T, Lee J-O (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33(4):647–661

    Article  CAS  Google Scholar 

  24. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Plasma-controlled chemistry in plasma reforming of methane. Int J Hydrog Energy 35(20):10967–10976

    Article  CAS  Google Scholar 

  25. Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: modeling study. Plasma Chem Plasma Process 23(2):327–346

    Article  CAS  Google Scholar 

  26. Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: experimental study. Plasma Chem Plasma Process 23(2):283–296

    Article  CAS  Google Scholar 

  27. Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process 30(2):267–279

    Article  CAS  Google Scholar 

  28. Pristavita R, Meunier J-L, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31(2):393–403

    Article  CAS  Google Scholar 

  29. Okeke L, Störi H (1991) Plasma-chemical decomposition of methane during diamond synthesis. Plasma Chem Plasma Process 11(4):489–499

    Article  CAS  Google Scholar 

  30. Lee H, Lee D-H, Song Y-H, Choi WC, Park Y-K, Kim DH (2015) Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chem Eng J 259:761–770

    Article  CAS  Google Scholar 

  31. Ogo S, Sekine Y (2017) Catalytic reaction assisted by plasma or electric field. Chem Rec 17(8):726–738

    Article  CAS  PubMed  Google Scholar 

  32. Moshrefi MM, Rashidi F (2018) Hydrogen production from methane decomposition in cold plasma reactor with rotating electrodes. Plasma Chem Plasma Process 38(3):503–515. https://doi.org/10.1007/s11090-018-9875-5

    Article  CAS  Google Scholar 

  33. Janev R, Reiter D (2002) Collision processes of CH y and CH y + hydrocarbons with plasma electrons and protons. Phys Plasmas 9(9):4071–4081

    Article  CAS  Google Scholar 

  34. Legrand J, Diamy A, Hrach R, Hrachova V (1998) Kinetics of reactions in CH4\N2 afterglow plasma: a simplified model. Vacuum 50(3–4):491–495

    Article  CAS  Google Scholar 

  35. Morgan NN, ElSabbagh M (2017) Hydrogen production from methane through pulsed DC plasma. Plasma Chem Plasma Process 37(5):1375–1392

    Article  CAS  Google Scholar 

  36. Kado S, Urasaki K, Sekine Y, Fujimoto K, Nozaki T, Okazaki K (2003) Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature. Fuel 82(18):2291–2297

    Article  CAS  Google Scholar 

  37. Chiremba E, Zhang K, Kazak C, Akay G (2017) Direct nonoxidative conversion of methane to hydrogen and higher hydrocarbons by dielectric barrier discharge plasma with plasma catalysis promoters. AIChE J 63(10):4418–4429. https://doi.org/10.1002/aic.15769

    Article  CAS  Google Scholar 

  38. Gao Y, Zhang S, Sun H, Wang R, Tu X, Shao T (2018) Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges. Appl Energy 226:534–545. https://doi.org/10.1016/j.apenergy.2018.06.006

    Article  CAS  Google Scholar 

  39. Khalifeh O, Mosallanejad A, Taghvaei H, Rahimpour MR, Shariati A (2016) Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies. Appl Energy 169:585–596

    Article  CAS  Google Scholar 

  40. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Zekordi SM (2012) Methane conversion to hydrogen and carbon black by DC-spark discharge. Plasma Chem Plasma Process 32(6):1157–1168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirollahivash, M., Rashidi, F. & Moshrefi, M.M. Hydrogen Production from Methane Decomposition Using a Mobile and Elongating Arc Plasma Reactor. Plasma Chem Plasma Process 39, 445–459 (2019). https://doi.org/10.1007/s11090-018-9950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9950-y

Keywords

Navigation