Skip to main content

Advertisement

Log in

Hydrogen Production from Methane Decomposition in Cold Plasma Reactor with Rotating Electrodes

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Methane decomposition in plasma reactor is a green process and can be considered as an economical route to produce COx-free hydrogen. The present study aimed to design and construct a plasma reactor with a unique feature of stable operation to provide an opportunity for direct decomposition of methane at almost ambient temperature. The reactor performance was evaluated in terms of hydrogen selectivity and methane conversion under various feed flow rate, plasma power, and electrode velocity. The main product was hydrogen with a small amount of C2 hydrocarbons where C2 refers to ethane, ethylene, and acetylene. In addition, the role of the degree of non-equilibrium state in plasma reactor performance was studied to provide a better understanding of the complex behavior of the cold plasma reactor. Better performance was observed through the rotation of high voltage electrode, compared to fixed electrode in terms of methane conversion attributed to the uniform dispersion of plasma power and effective distribution of active species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amirante R, Cassone E, Distaso E, Tamburrano P (2017) Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energy Convers Manag 132:372–387

    Article  CAS  Google Scholar 

  2. Zhou L, Enakonda LR, Harb M, Saih Y, Aguilar-Tapia A, Ould-Chikh S, J-l Hazemann, Li J, Wei N, Gary D (2017) Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials. Appl Catal B 208:44–59

    Article  CAS  Google Scholar 

  3. Pudukudy M, Yaakob Z, Takriff MS (2016) Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method. Energy Convers Manag 126:302–315

    Article  CAS  Google Scholar 

  4. Shen Y, Lua AC (2015) Polyol synthesis of nickel–copper based catalysts for hydrogen production by methane decomposition. Int J Hydrogen Energy 40(1):311–321

    Article  CAS  Google Scholar 

  5. Serrano DP, Botas JA, Pizarro P, Moreno I, Gomez G (2015) Hydrogen production through catalytic methane decomposition promoted by pure silica materials. Int J Hydrogen Energy 40(15):5237–5243

    Article  CAS  Google Scholar 

  6. Al-Hassani AA, Abbas HF, Daud WW (2014) Production of COx-free hydrogen by the thermal decomposition of methane over activated carbon: catalyst deactivation. Int J Hydrogen Energy 39(27):14783–14791

    Article  CAS  Google Scholar 

  7. Shapoval V, Marotta E (2015) Investigation on plasma-driven methane dry reforming in a self-triggered spark reactor. Plasma Processes Polym 12(8):808–816

    Article  CAS  Google Scholar 

  8. Horvath G, Zahoran M, Mason N, Matejcik S (2011) Methane decomposition leading to deposit formation in a DC positive CH4–N2 corona discharge. Plasma Chem Plasma Process 31(2):327–335

    Article  CAS  Google Scholar 

  9. Hsieh L-T, Lee W-J, Chen C-Y, Chang M-B, Chang H-C (1998) Converting methane by using an RF plasma reactor. Plasma Chem Plasma Process 18(2):215–239

    Article  CAS  Google Scholar 

  10. Lee DH, Song Y-H, Kim K-T, Lee J-O (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33(4):647–661

    Article  CAS  Google Scholar 

  11. Li T, Rehmet C, Cheng Y, Jin Y, Cheng Y (2017) Experimental comparison of methane pyrolysis in thermal plasma. Plasma Chem Plasma Process 37(4):1033–1049

    Article  CAS  Google Scholar 

  12. Ghorbani Z, Parvin P, Reyhani A, Mortazavi S, Moosakhani A, Maleki M, Kiani S (2014) Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure. J Phys Chem C 118(51):29822–29835

    Article  CAS  Google Scholar 

  13. Rahimpour M, Jahanmiri A, Shirazi MM, Hooshmand N, Taghvaei H (2013) Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking: effect of voltage and catalyst configuration. Chem Eng J 219:245–253

    Article  CAS  Google Scholar 

  14. Ogata A, Mizuno K, Kushiyama S, Yamamoto T (1998) Methane decomposition in a barium titanate packed-bed nonthermal plasma reactor. Plasma Chem Plasma Process 18(3):363–373

    Article  CAS  Google Scholar 

  15. Da Silva C, Ishikawa T, Santos S, Alves C, Martinelli A (2006) Production of hydrogen from methane using pulsed plasma and simultaneous storage in titanium sheet. Int J Hydrogen Energy 31(1):49–54

    Article  Google Scholar 

  16. Lotfalipour R, Ghorbanzadeh A, Mahdian A (2014) Methane conversion by repetitive nanosecond pulsed plasma. J Phys D Appl Phys 47(36):365201

    Article  Google Scholar 

  17. Sanchez-Gonzalez R, Kim Y, Rosocha LA, Abbate S (2007) Methane and ethane decomposition in an atmospheric-pressure plasma jet. IEEE Trans Plasma Sci 35(6):1669–1676

    Article  CAS  Google Scholar 

  18. Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: modeling study. Plasma Chem Plasma Process 23(2):327–346

    Article  CAS  Google Scholar 

  19. Morgan NN, ElSabbagh M (2017) Hydrogen production from methane through pulsed DC plasma. Plasma Chem Plasma Process 37(5):1375–1392

    Article  CAS  Google Scholar 

  20. Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: experimental study. Plasma Chem Plasma Process 23(2):283–296

    Article  CAS  Google Scholar 

  21. Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process 30(2):267–279

    Article  CAS  Google Scholar 

  22. Pristavita R, Meunier J-L, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31(2):393–403

    Article  CAS  Google Scholar 

  23. Okeke L, Störi H (1991) Plasma-chemical decomposition of methane during diamond synthesis. Plasma Chem Plasma Process 11(4):489–499

    Article  CAS  Google Scholar 

  24. Li XD, Zhang H, Yan SX, Yan JH, Du CM (2013) Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor. IEEE Trans Plasma Sci 41(1):126–132

    Article  Google Scholar 

  25. Zhang H, Du C, Wu A, Bo Z, Yan J, Li X (2014) Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int J Hydrogen Energy 39(24):12620–12635

    Article  CAS  Google Scholar 

  26. Moshrefi MM, Rashidi F (2014) Hydrogen production from methane by DC spark discharge: effect of current and voltage. J Nat Gas Sci Eng 16:85–89

    Article  CAS  Google Scholar 

  27. Moshrefi MM, Rashidi F, Bozorgzadeh HR (2015) Use of a DC discharge in a plasma reactor with a rotating ground electrode for production of synthesis gas by partial oxidation of methane. Res Chem Intermed 41(9):5941–5959

    Article  CAS  Google Scholar 

  28. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Haghighi ME (2013) Dry reforming of methane by DC spark discharge with a rotating electrode. Plasma Chem Plasma Process 33(2):453–466

    Article  CAS  Google Scholar 

  29. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Zekordi SM (2012) Methane conversion to hydrogen and carbon black by DC-spark discharge. Plasma Chem Plasma Process 32(6):1157–1168

    Article  CAS  Google Scholar 

  30. Younessi-Sinaki M, Matida EA, Hamdullahpur F (2009) Kinetic model of homogeneous thermal decomposition of methane and ethane. Int J Hydrogen Energy 34(9):3710–3716

    Article  CAS  Google Scholar 

  31. Dors M, Nowakowska H, Jasiński M, Mizeraczyk J (2014) Chemical kinetics of methane pyrolysis in microwave plasma at atmospheric pressure. Plasma Chem Plasma Process 34(2):313–326

    Article  CAS  Google Scholar 

  32. Fincke JR, Anderson RP, Hyde T, Detering BA, Wright R, Bewley RL, Haggard DC, Swank WD (2002) Plasma thermal conversion of methane to acetylene. Plasma Chem Plasma Process 22(1):105–136

    Article  CAS  Google Scholar 

  33. Kim H-H, Teramoto Y, Ogata A, Takagi H, Nanba T (2016) Plasma catalysis for environmental treatment and energy applications. Plasma Chem Plasma Process 36(1):45–72

    Article  Google Scholar 

  34. Long H, Shang S, Tao X, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst. Int J Hydrogen Energy 33(20):5510–5515

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshrefi, M.M., Rashidi, F. Hydrogen Production from Methane Decomposition in Cold Plasma Reactor with Rotating Electrodes. Plasma Chem Plasma Process 38, 503–515 (2018). https://doi.org/10.1007/s11090-018-9875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9875-5

Keywords

Navigation