Skip to main content
Log in

Designing Atmospheric-Pressure Plasma Sources for Surface Engineering of Nanomaterials

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ostrikov K (2005) Rev Mod Phys 77:489–511

    Article  CAS  Google Scholar 

  2. Chen QD, Dai LM, Gao M, Huang SM, Mau A (2001) J Phys Chem B 105:618–622

    Article  CAS  Google Scholar 

  3. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Surf Coat Tech 202:3427–3449

    Article  CAS  Google Scholar 

  4. Deb B, Kumar V, Druffel TL, Sunkara MK (2009) Nanotechnology 20:465701

    Article  CAS  Google Scholar 

  5. Choi K, Ghosh S, Lim J, Lee CM (2003) Appl Surf Sci 206:355–364

    Article  CAS  Google Scholar 

  6. Moravej M, Yang X, Nowling GR, Chang JP, Hicks RF, Babayan SE (2004) J Appl Phys 96:7011–7017

    Article  CAS  Google Scholar 

  7. Shi DL, Wang SX, van Ooij WJ, Wang LM, Zhao JG, Yu Z (2001) Appl Phys Lett 78:1243–1245

    Article  CAS  Google Scholar 

  8. Grinevich VI, Kvitkova EY, Plastinina NA, Rybkin VV (2011) Plasma Chem Plasma Process 31:573–583

    Article  CAS  Google Scholar 

  9. Cvelbar U, Ostrikov K, Mozetic M (2008) Nanotechnology 19:405605

    Article  Google Scholar 

  10. Long JD, Xu S, Cai JW, Jiang N, Lu JH, Ostrikov KN, Diong CH (2002) Mater Sci Eng, C 20:175–180

    Article  Google Scholar 

  11. Chen C, Ogino A, Wang X, Nagatsu M (2010) Appl Phys Lett 96:131504

    Article  Google Scholar 

  12. Ramajo L, Castro MS, Reboredo MM (2007) Compos Part A 38:1852–1859

    Article  Google Scholar 

  13. Mariotti D, Sankaran RM (2011) J Phys D-Appl Phys 44:174023

    Article  Google Scholar 

  14. Pei X, Lu X, Liu J, Liu D, Yang Y, Ostrikov K, Chu PK, Pan Y (2012) J Phys D-Appl Phys 45:165205

    Article  Google Scholar 

  15. Chu PK, Chen JY, Wang LP, Huang N (2002) Mater Sci Eng R 36:143–206

    Article  Google Scholar 

  16. Huang J, Li H, Chen W, Lv G-H, Wang X-Q, Zhang G-P, Ostrikov K, Wang P-Y, Yang S-Z (2011) Appl Phys Lett 99:253701

    Article  Google Scholar 

  17. Lee SW, Liang D, Gao XPA, Sankaran RM (2011) Adv Funct Mater 21:2155–2161

    Article  CAS  Google Scholar 

  18. Chiang WH, Sankaran RM (2009) Nat Mater 8:882–886

    Article  CAS  Google Scholar 

  19. Mukherjee N, Wavhal D, Timmons RB (2010) ACS Appl Mater Interf 2:397–407

    Article  CAS  Google Scholar 

  20. Roduner E (2006) Chem Soc Rev 35:583–592

    Article  CAS  Google Scholar 

  21. Jafari R, Asadollahi S, Farzaneh M (2012) Plasma Chem Plasma Process doi:10.1007/s11090-012-9413-9

  22. Du C, Huang D, Li H, Xiao M, Wang K, Zhang L, Li Z, Chen T, Mo J, Gao D, Huang Y, Liu S, Yu L, Zhang C (2012) Plasma Chem Plasma Process. doi: 10.1007/s11090-012-9412-x

  23. Cui NY, Brown NMD (2002) Appl Surf Sci 189:31–38

    Article  CAS  Google Scholar 

  24. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Surf Coat Technol 202:3427–3449

    Article  CAS  Google Scholar 

  25. Hoshi N, Matsui A (2012) Electr Eng Jpn 180:57–64

    Article  Google Scholar 

  26. Thomas S, Raman S, Mohanan P, Sebastian MT (2010) Compos Part A 41:1148–1155

    Article  Google Scholar 

  27. Shashurin A, Shneider MN, Keidar M (2012) Plasma Sources Sci Technol 21:034006

    Article  Google Scholar 

  28. Sima WX, Peng QJ, Yang Q, Yuan T, Shi J (2012) IEEE Trans Dielect Elect Insul 19:660–670

    Article  CAS  Google Scholar 

  29. Laroussi M, Akan T (2007) Plasma Process Polym 4:777–788

    Article  CAS  Google Scholar 

  30. Cao Z, Walsh JL, Kong MG (2009) Appl Phys Lett 94:021501

    Article  Google Scholar 

  31. Lu X, Jiang Z, Xiong Q, Tang Z, Hu X, Pan Y (2008) Appl Phys Lett 92:081502

    Article  Google Scholar 

  32. Shashurin A, Keidar M, Bronnikov S, Jurjus RA, Stepp MA (2008) Appl Phys Lett 93:181501

    Article  Google Scholar 

  33. Kieft IE, van der Laan EP, Stoffels E (2004) New J Phys 6:149

    Article  Google Scholar 

  34. Liu ZW, Yang XF, Zhu AM, Zhao GL, Xu Y (2008) Eur Phys J D 48:365–373

    Article  CAS  Google Scholar 

  35. Liu DX, Iza F, Wang XH, Kong MG, Rong MZ (2011) Appl Phys Lett 98:221501

    Article  Google Scholar 

  36. Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) J Mater Sci 42:3789–3799

    Article  CAS  Google Scholar 

  37. Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Goyal A, More KL (2007) Nanotechnology 18:325704

    Article  Google Scholar 

  38. Qi L, Lee BI, Chen SH, Samuels WD, Exarhos GJ (2005) Adv Mater 17:1777–1781

    Article  CAS  Google Scholar 

  39. Imai T, Sawa F, Nakano T, Ozaki T, Shimizu T, Kozako M, Tanaka T (2006) IEEE Trans Dielect Elect Insul 13:319–326

    Article  CAS  Google Scholar 

  40. Yan W, Han ZJ, Phung BT, Ostrikov K (2012) ACS Appl Mater Interf 4:2637–2642

    Article  CAS  Google Scholar 

  41. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) IEEE Trans Dielect Elect Insul 12:629–643

    Article  CAS  Google Scholar 

  42. Ostrikov K, Levchenko I, Cvelbar U, Sunkara M, Mozetic M (2010) Nanoscale 2:2012–2027

    Article  CAS  Google Scholar 

  43. Tsakadze ZL, Ostrikov K, Long JD, Xu S (2004) Diamond Relat Mater 13:1923–1929

    Article  CAS  Google Scholar 

  44. Han ZJ, Levchenko I, Kumar S, Yajadda MMA, Yick S, Seo DH, Martin PJ, Peel S, Kuncic Z, Ostrikov K (2011) J Phys D-Appl Phys 44:174019

    Article  Google Scholar 

  45. Mathias J, Wannemacher G (1988) J Colloid Interface Sci 125:61–68

    Article  CAS  Google Scholar 

  46. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) IEEE Trans Dielect Elect Insul 12:669–681

    Article  CAS  Google Scholar 

  47. Lewis TJ (2004) IEEE Trans Dielect Elect Insul 11:739–753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostya Ostrikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, W., Han, Z.J., Liu, W.Z. et al. Designing Atmospheric-Pressure Plasma Sources for Surface Engineering of Nanomaterials. Plasma Chem Plasma Process 33, 479–490 (2013). https://doi.org/10.1007/s11090-013-9441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9441-0

Keywords

Navigation