Skip to main content
Log in

Influence of Helium on the Conversion of Methane and Carbon dioxide in a Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We have studied the production of synthesis gas and other hydrocarbons in a dielectric barrier discharge using mixtures of helium, methane and carbon dioxide. It was found that helium has a significant influence on the discharge, decreasing the breakdown voltage and increasing the rate of conversion of CH4 and CO2. However it also decreases the selectivities and the range of stable operating conditions for the discharge. The main products obtained were H2, CO, C2H6 and C3H8 but traces of other hydrocarbon, carbon deposition and the formation of condensable products were also detected. The rate of conversion and conversion abilities were obtained by fitting the conversion results to a model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Aghamir [5] concludes that the rare gas has no effect but Fig. 5 in that paper indicates otherwise.

References

  1. Nair SA, Nozaki T, Okazaki K (2007) Chem Eng J 132:85–95

    Article  Google Scholar 

  2. Thanyachotpaiboon K, Chavadej S, Caldwell TA, Lobban LL, Mallinson RG (1998) AIChE J 44:2252–2257

    Article  Google Scholar 

  3. Okumoto M, Kim HH, Takashima K, Katsura S, Mizuno A (2001) IEEE Trans Ind Appl 37:1618–1624

    Article  Google Scholar 

  4. Indarto A, Choi J-W, Lee H, Song HK (2006) Energy 31:2986–2995

    Article  Google Scholar 

  5. Aghamir FM, Matin NS, Jalili AH, Esfarayeni MH, Khodagholi MA, Ahmadi R (2004) Plasma Sources Sci Technol 13:707

    Article  ADS  Google Scholar 

  6. Malik M, Jiang X (1999) Plasma Chem Plasma Process 19:505–512

    Article  Google Scholar 

  7. Larkin DW, Lobban LL, Mallinson RG (2001) Catal Today 71:199–201

    Article  Google Scholar 

  8. Liu C-J, Xue B, Eliasson B, He F, Li Y, Xu G-H (2001) Plasma Chem Plasma Process 21:301–310

    Article  Google Scholar 

  9. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668–675

    Article  Google Scholar 

  10. Yang Y (2003) Plasma Chem Plasma Process 23:327–346

    Article  Google Scholar 

  11. Zhang Y-P, Li Y, Wang Y, Liu C-J, Eliasson B (2003) Fuel Process Technol 83:101–109

    Article  Google Scholar 

  12. Zheng G, Jiang J, Wu Y, Zhang R, Hou H (2003) Plasma Chem Plasma Process 23:59–68

    Article  Google Scholar 

  13. Kado S, Sekine Y, Nozaki T, Okazaki K (2004) Catal Today 89:47–55

    Article  Google Scholar 

  14. Khassin AA, Pietruszka BL, Heintze M, Parmon VN (2004) React Kinet Catal Lett 82:111–119

    Article  Google Scholar 

  15. Li X-S, Zhu A-M, Wang K-J, Xu Y, Song Z-M (2004) Catal Today 98:617–624

    Article  Google Scholar 

  16. Pietruszka B, Anklam K, Heintze M (2004) Appl Catal 261:19–24

    Article  Google Scholar 

  17. Pietruszka B, Heintze M (2004) Catal Today 90:151–158

    Article  Google Scholar 

  18. Song HK, Lee H, Choi J-W, Na BK (2004) Plasma Chem Plasma Process 24:57–72

    Article  Google Scholar 

  19. Indarto A, Choi J-W, Lee H, Song HK (2005) J Nat Gas Chem 14:13–21

    Google Scholar 

  20. Indarto A, Choi J-W, Lee H, Song HK (2006) J Nat Gas Chem 15:87–92

    Article  Google Scholar 

  21. Istadi I, Amin NAS (2006) Fuel 85:577–592

    Article  Google Scholar 

  22. Istadi I, Amin NAS (2007) Chem Eng Sci 62:6568–6581

    Article  Google Scholar 

  23. Kim S-S, Lee H, Choi J-W, Na B-K, Song HK (2007) Catal Commun 8:1438–1442

    Article  Google Scholar 

  24. Kim S-S, Kwon B, Kim J (2007) Catal Commun 8:2204–2207

    Article  Google Scholar 

  25. Naidis GV (2007) J Phys 40:4525–4531

    ADS  Google Scholar 

  26. Baowei W, Kuanhui Y, Genhui X (2008) Plasma Sci Tech 10:575

    Article  Google Scholar 

  27. Indarto A (2008) J Chin Inst Chem Eng 39:23–28

    Article  Google Scholar 

  28. Indarto A, Coowanitwong N, Choi J-W, Lee H, Song HK (2008) Fuel Process Technol 89:214–219

    Article  Google Scholar 

  29. Indarto A, Yang DR, Palgunadi J, Choi J-W, Lee H, Song HK (2008) Chem Eng Process 47:780–786

    Article  Google Scholar 

  30. Rueangjitt N, Sreethawong T, Chavadej S (2008) Plasma Chem Plasma Process 28:49–67

    Article  Google Scholar 

  31. Jasinski M, Dors M, Nowakowska H, Mizeraczyk J (2008) Chem Listy 102:s1332–s1337

    Google Scholar 

  32. Mfopara A, Kirkpatrick MJ, Odic E (2009) Plasma Chem Plasma Process 29:91–102

    Article  Google Scholar 

  33. Janeco A, Pinhão NR, Branco JB, Ferreira AC (2009) ISPC19-Proceedings P2.2.64:773

  34. Pinhão NR, Janeco A, Branco JB, Ferreira AC (2009) ISPC19-Proceedings O16.02:669

  35. Pinhão NR, Janeco A, Branco JB (2010) HAKONE XII—book of contributed papers, vol 2, pp 412–416

  36. Pinhão NR, Vranic M (2010) XX ESCAMPIG—conference proceedings P1.30

Download references

Acknowledgments

We acknowledge the financial support by FCT under the contract number PTDC/EQU-EQU/65126/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Pinhão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinhão, N.R., Janeco, A. & Branco, J.B. Influence of Helium on the Conversion of Methane and Carbon dioxide in a Dielectric Barrier Discharge. Plasma Chem Plasma Process 31, 427–439 (2011). https://doi.org/10.1007/s11090-011-9294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9294-3

Keywords

Navigation