Skip to main content
Log in

Conversion of hydrocarbon gases in dielectric barrier discharge in the presence of water

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The conversion of C1–C4 hydrocarbons into gaseous and liquid products in a dielectric barrier discharge plasma in the presence of water has been studied. The formation of a deposit on the electrode surface is prevented by introducing water in the liquid state into a gaseous hydrocarbon stream, a finding that has been confirmed by IR spectroscopic study of the electrode surface. Hydrogen and C2+ hydrocarbons have been detected among the gaseous products of conversion, the liquid products being represented by C6–C10+ alkanes. The total liquid products have amounted to 13.4, 26.0, or 36.6% for the methane, propane, or n-butane conversion, respectively. A 10% propane or butane admixture to methane increases the yield of the liquid products to make 22.0 and 31.7% for the methane–propane and the methane–butane mixture, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tatarova, E., Unalaska, N., Barrette, J.P., and Ferreira, C.M., Plasma Sources Sci. Technol., 2014, vol. 23, no. 6, p. 063002.

    Article  CAS  Google Scholar 

  2. Oshawa, K., Shinagawa, T., and Skein, Y., J. Jpn. Pet. Inst., 2013, vol. 56, no. 1, p. 11.

    Article  Google Scholar 

  3. Belmonte, T., Arnold, G., Heroin, G., and Gris, T., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 36, p. 363001.

    Article  Google Scholar 

  4. Pushkarev, A.I., Zhu, A.-M., Li, X.-S., and Simonov, R.V., High Energy Chem., 2009, vol. 43, no. 3, p. 156.

    Article  CAS  Google Scholar 

  5. Petitas, G., Roller, J., Damon, A., Gonzalezaguilar, J., Metkemeljer, R., and Fulcheri, L., Int. J. Hydrogen Energy, 2007, vol. 32, no. 14, p. 2848.

    Article  Google Scholar 

  6. Kobayashi, K., Kulinich, S.A., and Ito, T., J. Appl. Phys., 2014, vol. 116, no. 12, p. 123301.

    Article  Google Scholar 

  7. Jo, S., Kim, T., Lee, D.H., and Kang, W.S., Song, Y.-H., Plasma Chem. Plasma Process., 2013, vol. 34, no. 1, p. 175.

    Article  Google Scholar 

  8. Nozaki, T. and Okazaki, K., Catal. Today, 2013, vol. 211, p. 29.

    Article  CAS  Google Scholar 

  9. Amin, N., Fuel, 2006, vol. 85, no. 5/6, p. 577.

    Google Scholar 

  10. Zhang, K., Eliasson, B., and Kogelschatz, U., Ind. Eng. Chem. Res., 2002, vol. 41, p. 1462.

    Article  CAS  Google Scholar 

  11. Hoeben, W.F.L.M., Boekhoven, W., Beckers, F.J.C.M., van Heesch, E.J.M., and Pemen, A.J.M., J. Phys. D: Appl. Phys., 2014, vol. 47, no. 35, p. 355202.

    Article  Google Scholar 

  12. Nozaki, T., Goujard, V., Yuzawa, S., Moriyama, S., Agiral, A., and Okazaki, K., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 27, p. 274010.

    Article  Google Scholar 

  13. Lu, J. and Li, Z., J. Nat. Gas Chem., 2010, vol. 19, no. 4, p. 375.

    Article  CAS  Google Scholar 

  14. Scarduelli, G., Guella, G., Mancini, I., Dilecce, G., Benedictis, S.D., and Tosi, P., Plasma Process. Polym., 2009, vol. 6, no. 1, p. 27.

    Article  CAS  Google Scholar 

  15. Indarto, A., Coowanitwong, N., Choi, J.W., Lee, H., and Song, H.K., Fuel Process. Technol., 2007, vol. 89, no. 2, p. 214.

    Article  Google Scholar 

  16. Il'ina, A.A., Ryabov, A.Yu., Chuikin, A.V., and Velikov, A.A., J. Anal. Chem., 2015, vol. 70, no. 2, p. 125.

    Article  Google Scholar 

  17. Robertson, J., Mater. Sci. Eng. R, 2002, vol. 37, nos. 4–6, p. 129.

    Article  Google Scholar 

  18. Janev, R.K. and Reiter, D., Phys. Plasmas, 2004, vol. 11, p. 780.

    Article  CAS  Google Scholar 

  19. Baulch, D.L., Cobos, C.J., Cox, R.A., et al., J. Phys. Chem. Ref. Data, 1992, vol. 21, no. 3, p. 411.

    Article  CAS  Google Scholar 

  20. Tsang, W., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 2, p. 887.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Ryabov.

Additional information

Original Russian Text © S.V. Kudryashov, A.Yu. Ryabov, A.N. Ochered’ko, 2017, published in Khimiya Vysokikh Energii, 2017, Vol. 51, No. 2, pp. 137–141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, S.V., Ryabov, A.Y. & Ochered’ko, A.N. Conversion of hydrocarbon gases in dielectric barrier discharge in the presence of water. High Energy Chem 51, 128–131 (2017). https://doi.org/10.1134/S0018143917020084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143917020084

Keywords

Navigation