Skip to main content

Advertisement

Log in

Dry Reforming of Methane with Carbon Dioxide Using Pulsed DC Arc Plasma at Atmospheric Pressure

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Dry reforming of CH4 with CO2 to produce syngas was investigated in a plasma reactor without catalysts at atmospheric pressure. The reactants passed through the plasma zone and reacted in milliseconds with high conversions and selectivity due to the localized high temperature. The results showed that both conversions and selectivity were higher when using a DC arc discharge than using a pulsed DC arc. Increasing the input energy density promoted the conversions of reactants. At an input power of 204 W, the conversions of CO2 and CH4 reached 99.3 and 99.6%, respectively, and the selectivity to products was almost 100%, where the molar ratio of CO2/CH4 was 1 with the reactants flow rate of 100 ml/min. Very little coke was formed during the course of reaction. Key parameters such as the pulse frequency, the input power and the total feed flow rate were studied to find the optimum operating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skeer J, Wang Y (2006) Energy Policy 34:2251–2262

    Article  Google Scholar 

  2. Fco E, Úbeda F, Berzosa A (2007) Energy Econ 29:710–742

    Article  Google Scholar 

  3. Feng H, Zhang H, Xu L (2007) Energy Sour 29:1269–1278

    Article  Google Scholar 

  4. Edwards JH, Maitra AM (1995) Fuel Process Technol 42:269–289

    Article  Google Scholar 

  5. Wender I (1996) Fuel Process Technol 48:189–297

    Article  Google Scholar 

  6. Deminsky M, Jivotov V, Potapkin B, Rusanov V (2002) Pure Appl Chem 74:413–418

    Article  Google Scholar 

  7. Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B (2003) Fuel Process Technol 83:101–109

    Article  Google Scholar 

  8. Huang H, Tang L (2007) Energy Convers Manage 48:1331–1337

    Article  Google Scholar 

  9. Jiang T, Li Y, Liu CJ, Xu GH, Eliasson B, Xue BZ (2007) Catal Today 72:229–235

    Article  Google Scholar 

  10. Chen HW, Wang CY, Yu CH, Tseng LT, Liao PH (2004) Catal Today 97:173–180

    Article  Google Scholar 

  11. Jóźwiak WK, Nowosielska M, Rynkowski J (2005) Appl Catal. A 280:233–244

    Google Scholar 

  12. Malik MA, Jiang XZ (1999) Plasma Chem Plasma Process 19:505–512

    Article  Google Scholar 

  13. Huang AM, Xia GG, Wang JY et al (2000) J Catal 189:349–359

    Article  Google Scholar 

  14. Cheng DG, Zhu XZ, Ben YH, He F, Cui L, Liu CJ (2006) Catal Today 115:205–210

    Article  Google Scholar 

  15. Ghorbanzadeha AM, Modarresi HJ (2007) Appl Phys 101:1–10

    Google Scholar 

  16. Patino P, Pérez Y, Caetano M (2005) Fuel 84:2008–2014

    Article  Google Scholar 

  17. Tsai CH, Huang KL, Hsieh LT (2005) Ind Eng Chem Res 44:6566–6571

    Article  Google Scholar 

  18. Liu CJ, Xue BZ, Eliasson B, He F, Li Y, Xu GH (2001) Plasma Chem Plasma Process 21:301–310

    Article  Google Scholar 

  19. Song HK, Lee H, Choi JW, Na BK (2004) Plasma Chem Plasma Process 24:57–72

    Article  Google Scholar 

  20. Wang Q, Yan BH, Jin Y, Cheng Y (2009) Plasma Chem Plasma Process 29:217–228

    Article  Google Scholar 

  21. Chun YN, Song HO (2006) Environ Eng Sci 23:1017–1023

    Article  Google Scholar 

  22. Rueangjitt N, Akarawitoo C, Sreethawong T, Chavadej S (2007) Plasma Chem Plasma Process 27:559–576

    Article  Google Scholar 

  23. Rueangjitt N, Sreethawong T, Chavadej S (2008) Plasma Chem Plasma Process 28:49–67

    Article  Google Scholar 

  24. Bo Z, Yan JH, Li XD, Chi Y, Cen K (2008) Int J Hydrogen Energy 33:5545–5553

    Article  Google Scholar 

  25. Chun YN, Song HO (2008) Energy Sour 30:1202–1212

    Article  Google Scholar 

  26. Song HK, Choi JW, Yue SH, Lee H, Na BK (2004) Catal Today 89:27–33

    Article  Google Scholar 

  27. Tao XM, Qi FW, Yin YX, Dai XY (2008) Int J Hydrogen Energy 33:1262–1265

    Article  Google Scholar 

  28. Kim SC, Chun YN (2008) Renew Energy 33:1564–1569

    Article  Google Scholar 

  29. Nozaki T, Hiroyuki T, Okazaki K (2006) Energy Fuel 20:339–345

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from National Natural Science Foundation of China (NSFC) under the grant of No. 20976091 and National High Technology Research and Development Program of China (863 Program, Grant No. 2009AA044701) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B.H., Wang, Q., Jin, Y. et al. Dry Reforming of Methane with Carbon Dioxide Using Pulsed DC Arc Plasma at Atmospheric Pressure. Plasma Chem Plasma Process 30, 257–266 (2010). https://doi.org/10.1007/s11090-010-9217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9217-8

Keywords

Navigation