Skip to main content
Log in

Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor

  • Origial paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Low temperature conversion of CH4 and CO2 was investigated in a coaxial dielectric barrier discharge reactor at ambient pressure. Main parameters, including the input power, the residence time, the discharge gap, the molar ratio of the feed gases and the multi-stage ionization design were evaluated to understand the ways to improve the conversion of greenhouse gases and reduce the output of by-products. At certain input power, the conversion of CH4 and CO2 can reach 0.797 and 0.527, respectively, when the molar ratio of CH4/CO2 is one. When this ratio was low to 1:5, the conversion of CH4 was promoted to 0.843 and the selectivity to CO and H2 was almost 100%. The multi-stage ionization favored the conversion of CO2, which would also be an efficient design to promote the selectivity to the main products such as CO and H2 and suppress the selectivity to the by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References:

  1. Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation: science and technology. CRC press, Boca Raton

    Google Scholar 

  2. Haugan PM, Thorkildsen F, Alendal G (1995) Energy Convers Manag 36:461–466

    Article  Google Scholar 

  3. Seifritz W (1990) Nature 345:486

    Article  ADS  Google Scholar 

  4. Martin MH (1993) Chemical fixation of carbon dioxide: methods for recycling CO2 into useful products. CRC press, Boca Raton

    Google Scholar 

  5. Xu XD, Moulijn JA (1996) Energy Fuel 10:305–325

    Article  Google Scholar 

  6. Rojey A, Jaffret C, Cornot-Gandolphe S, Durand B, Jullian S, Valais M (1997) Natural gas: production, processing, transport. Editions TECHNIP, Paris, pp 20–23

    Google Scholar 

  7. Wender I (1996) Fuel Process Technol 48:189–297

    Article  Google Scholar 

  8. Barrai F, Jackson T, Whitmore N, Castaldi MJ (2007) Catal Today 129:391–396

    Article  Google Scholar 

  9. Pechimuthu NA, Pant KK, Dhingra SC (2007) Ind Eng Chem Res 46:1731–1736

    Article  Google Scholar 

  10. Edwards JH, Maitra AM (1995) Fuel Process Technol 42:269–289

    Article  Google Scholar 

  11. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225–226

    Article  ADS  Google Scholar 

  12. Eliasson B, Kogelschatz U (1991) IEEE T Plasma Sci 19:1063–1077

    Article  ADS  Google Scholar 

  13. Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Int J Hydrog Energy 33:5545–5553

    Article  Google Scholar 

  14. Rueangjitt N, Akarawitoo C, Sreethawong T, Chavadej S (2007) Plasma Chem Plasma Process 27:559–576

    Article  Google Scholar 

  15. Rueangjitt N, Sreethawong T, Chavadej S (2008) Plasma Chem Plasma Process 28:49–67

    Article  Google Scholar 

  16. Ghorbanzadeh AM, Modarresi H (2007) J Appl Phys 101:1233303

    Article  ADS  Google Scholar 

  17. Savinov SY, Lee H, Song HK, Na BK (1999) Ind Eng Chem Res 38:2540–2547

    Article  Google Scholar 

  18. Tsai CH, Hsieh TH (2004) Ind Eng Chem Res 43:4043–4047

    Article  Google Scholar 

  19. Zhang JQ, Zhang JS, Yang YJ, Liu Q (2003) Energy Fuel 17:54–59

    Article  Google Scholar 

  20. Yang Y (2002) Ind Eng Chem Res 41:5918–5926

    Article  Google Scholar 

  21. Malik MA, Jiang XZ (1999) Plasma Chem Plasma Process 19:505–512

    Article  Google Scholar 

  22. Huang AM, Xia GG, Wang JY, Suib SL, Hayashi Y, Matsumoto H (2000) J Catal 189:349–359

    Article  Google Scholar 

  23. Zhou ML, Xue B, Kogelschatz U, Eliasson B (1998) Energy Fuel 12:1191–1199

    Article  Google Scholar 

  24. Gesser HD, Hunter NR, Probawono D (1998) Plasma Chem Plasma Process 18:241–245

    Article  Google Scholar 

  25. Liu CJ, Xue BZ, Eliasson B, He F, Li Y, Xu GH (2001) Plasma Chem Plasma Process 21:301–310

    Article  Google Scholar 

  26. Kraus M, Eliasson B, Kogelschatz U, Wokaun A (2001) Phys Chem Chem Phys 3:294–300

    Article  Google Scholar 

  27. Song HK, Lee H, Choi J, Na B (2004) Plasma Chem Plasma Process 24:57–72

    Article  Google Scholar 

  28. Kogelschatz U, Eliasson B, Egli W (1997) J Phys IV 7:47–66

    Article  Google Scholar 

  29. Kogelschatz U (2000) IEEE conference record—abstracts 27th IEEE international conference on plasma science (Cat. No.00CH37087):81

  30. Manley TC (1943) Trans Electrochem Soc 84:83–96

    Google Scholar 

  31. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668–675

    Article  Google Scholar 

  32. Weast RC (1968) Handbook of chemistry and physics, 49th edn. Chemical Rubber Company

  33. Barton MJ, Engel AV (1970) Phys Lett A 32:173–174

    Article  ADS  Google Scholar 

  34. Fridman AA, Resanov VD (1994) Pure Appl Chem 66:1267–1278

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from CNPC Innovation Foundation is acknowledged. The authors would also like to thank the continuous support from PetroChina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Yan, BH., Jin, Y. et al. Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor. Plasma Chem Plasma Process 29, 217–228 (2009). https://doi.org/10.1007/s11090-009-9173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9173-3

Keywords

Navigation