Skip to main content
Log in

Density of O-atoms in an Afterglow Reactor During Treatment of Wool

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Density of neutral oxygen atoms in the ground state has been measured during treatment of wool fabric samples. Samples were placed in an afterglow reactor with a volume of about 5 l, which was pumped with a two stage rotary pump with the nominal pumping speed of 28 m3/h. The source of the oxygen atoms was a microwave discharge operating in the surfatron mode at 2.45 GHz and adjustable output power up to 300 W. The density of O-atoms in the afterglow chamber was measured with a fiber-optics catalytic probe. For the empty reactor, the O density depended on discharge parameters and was between 0.8 and 2.8 × 1021 m−3 at 40 and 50 Pa respectively. During the treatment of wool, the O density depended largely on the exposure time. For untreated samples, the O density was below the detection limit of the probe, while prolonged treatment allowed for recovering the O density. The recovery always occurred after having submitted wool samples to the dose of the order of 1023 atoms/m2. The results were explained by oxidation of the thin lipid layer on the surface of the wool fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wakida T, Lee M, Sato Y, Ogasawara S (1996) J Soc Dyers Colourists 112:233

    Google Scholar 

  2. Byrne GA, Brown KC (1972) J Soc Dyers Colourists 88:113

    Google Scholar 

  3. Kan CW, Chan K, Yuen CWM, Miao MH (1999) Textile Res J 69:407

    Google Scholar 

  4. Molina R, Canal C, Bertran E, Tascón JMD, Erra P (2005) In: Mendez-Vilas A, Labajos-Broncano L (eds) Current issues on multidisciplinary microscopic research and education, vol 2, Formatex, Badajoz

    Google Scholar 

  5. Wong KK, Tao XM, Yuen CWM, Yeung KW (2000) Coloration Tech 116:208

    Article  Google Scholar 

  6. Canal C, Gaboriau F, Molina R, Erra P, Ricard A (2007) Plama Process Polym 4:445

    Article  Google Scholar 

  7. Klanjsek Gunde M, Kunaver M, Cvelbar U, Barle N (2005) Vacuum 80:189

    Article  Google Scholar 

  8. Kunaver M, Klanjsek Gunde M (2004) Thin solid Films 459:115

    Article  ADS  Google Scholar 

  9. Cvelbar U, Markoli B, Poberaj I, Zalar A, Kosek L, Spaic S (2006) Appl Surf Sci 253:1861

    Article  ADS  Google Scholar 

  10. Kan CW, Chan K, Yuen CMW, Miao MH (1998) J Mat Proc Tech 82:122

    Article  Google Scholar 

  11. Erra P, Molina R, Jocic D., Julia MR, Cuesta A, Tascon JMD (1999) Textile Res J 69:811

    Google Scholar 

  12. Molina R, Jovancic P, Comelles F, Bertran E, Erra P (2002) J Adhesion Sci Tech 16:1469

    Article  Google Scholar 

  13. Byrne KM, Godau J (2005) Proc 9th Int Wool Text Res Conf 4:415

    Google Scholar 

  14. Gregorski KS, Pavlath AE (1980) Textile Res J 50:42

    Google Scholar 

  15. Rakowski W (1989) Melliand Textilber 70:780

    Google Scholar 

  16. Ryu J, Wakida T, Takagishi T (1991) Textile Res J 61:595

    Article  Google Scholar 

  17. Feughelman M (1997) Mechanical properties and structure of alpha-keratin fibres: wool, human hair and related fibres. University of New South Wales Press, Sidney

    Google Scholar 

  18. Drenik A, Cvelbar U, Vesel A, Mozetic M (2005) Inf MIDEM 35:85

    Google Scholar 

  19. Mozetic M, Zalar A (2000) Appl Surf Sci 158:263

    Article  ADS  Google Scholar 

  20. Vesel A, Mozetic M, Zalar A (2002) Appl Surf Sci 200:94

    Article  ADS  Google Scholar 

  21. Villeger S, Sarrette JP Ricard A (2005) Plasma Process Polym 2:709

    Article  Google Scholar 

  22. Cvelbar U, Mozetic M, Ricard A (2005) IEEE Trans Plasma Sci 33:834

    Article  ADS  Google Scholar 

  23. Poberaj I, Mozetic M, Babic D (2002) J Vac Sci Technol, A, Vac Surf Films 20:189

    Article  ADS  Google Scholar 

  24. Mozetic M, Ricard A, Babic D, Poberaj I, Levaton J, Monna V, Cvelbar U (2003) J Vac Sci Technol, A, Vac Surf Films 21:369

    Article  ADS  Google Scholar 

  25. Mozetic M, Vesel A, Cvelbar U, Ricard A (2006) Plasma Chem Plasma Process 26:103

    Article  Google Scholar 

  26. Cvelbar U, Mozetic M, Babic D, Poberaj I, Ricard A (2006) Vacuum 80:904

    Article  Google Scholar 

  27. Hossain MM, Herrmann AS, Hegemann D (2006) Plasma Chem Plasma Process 3:299

    Google Scholar 

  28. Grill A (1993) Cold plasma in material fabrication. IEEE Press, Piscataway

    Google Scholar 

  29. Negri AP, Cornell HJ, Rivett DE (1993) Textile Res J 63:109

    Article  Google Scholar 

  30. Canal C, Molina R, Erra P, Ricard A (2006) Eur Phys J Appl Phys 36:35

    Article  Google Scholar 

Download references

Acknowledgements

The research was partially supported by Slovenian-French Proteus project (Grant no. BI-FR-06-006). The authors would like to acknowledge the French Ministère de l’Education Nationale de la Recherche et de la Technologie for the post-doc grant of C.Canal

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Canal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canal, C., Gaboriau, F., Ricard, A. et al. Density of O-atoms in an Afterglow Reactor During Treatment of Wool. Plasma Chem Plasma Process 27, 404–413 (2007). https://doi.org/10.1007/s11090-007-9078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9078-y

Keywords

Navigation