Skip to main content
Log in

Thermodynamic and Transport Properties of Two-temperature Oxygen Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thermodynamic and transport properties of two-temperature oxygen plasmas are presented. Variation of species densities, mass densities, specific heat, enthalpy, viscosity, thermal conductivity, collision frequency and electrical conductivity as a function of temperature, pressure and different degree of temperature non-equilibrium are computed. Reactional, electronic and heavy particle components of the total thermal conductivity are discussed. To meet practical needs of fluid-dynamic simulations, temperatures included in the computation range from 300 K to 45,000 K, the ratio of electron temperature (T e) to the heavy particle temperature (T h) ranges from 1 to 30 and the pressure ranges from 0.1 to 7 atmospheres. Results obtained for thermodynamic equilibrium (T e = T h) under atmospheric pressure are compared with published results obtained for similar conditions. Observed overall agreement is reasonable. Slight deviations in some properties may be attributed to the values used for collision integral data and for the two temperature formulations used. An approach for computing properties under chemical non-equilibrium and associated deviations from two-temperature results under similar conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Devoto RS (1967) Phys Fluids 10:354

    Article  ADS  Google Scholar 

  2. Devoto RS (1973) Phys Fluids 16:616

    Article  ADS  Google Scholar 

  3. Murphy AB, Arundell CJ (1994) Plasma Chem Plasma Process 14:451

    Article  Google Scholar 

  4. Murphy AB (1995) Plasma Chem Plasma Process 15:279

    Article  MathSciNet  Google Scholar 

  5. Murphy AB (1997) IEEE Trans Plas Sci 25:809

    Article  MathSciNet  ADS  Google Scholar 

  6. Murphy AB (2000) Plasma Chem Plasma Process 20:279

    Article  Google Scholar 

  7. Fauchais P, Elchinger MF, Aubreton J (2000) J High Temp Material Process 4:21

    Google Scholar 

  8. Aubreton J, Elchinger MF, Fauchais P, Rat V, Andre P (2004) J Phys D Appl Phys 37:2232

    Article  ADS  Google Scholar 

  9. Hirschfelder JO, Kurtis CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New York

    Google Scholar 

  10. Chapman S, Cowling TG (1972) The mathematical theory of transport processes in gases. North-Holland, Amsterdam

    Google Scholar 

  11. Devoto RS (1967) Phys Fluids 10:2105

    Article  ADS  Google Scholar 

  12. Devoto RS (1965) Ph.D. thesis, Stanford University

  13. Miller EJ, Sandler SI (1973) Phys Fluids 16:491

    Article  ADS  Google Scholar 

  14. Kannappan D, Bose TK (1977) Phys Fluids 20:1668

    Article  ADS  Google Scholar 

  15. Bonnefoi C (1983) State thesis, University of Limoges, France

  16. Aubreton J, Bonnefoi C, Mexmain JM (1986) Rev Phys Appl 21:365

    Google Scholar 

  17. Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) Phys Rev E 64:064091

    Article  Google Scholar 

  18. Rat V, Aubreton J, Elchinger MF, Fauchais P (2001) Plasma Chem Plasma Process 21:355

    Article  Google Scholar 

  19. Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Plasma Chem Plasma Process 22:453

    Article  Google Scholar 

  20. Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Plasma Chem Plasma Process 22:475

    Article  Google Scholar 

  21. Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Vacher D (2002) J Phys D Appl Phys 35:981

    Article  ADS  Google Scholar 

  22. Aubreton J, Elchinger MF, Rat V, Fauchais P (2004) J Phys D Appl Phys 37:34

    Article  ADS  Google Scholar 

  23. Ramshaw JD (1993) J Non-Equilib Thermodyn 18:121

    Article  MATH  Google Scholar 

  24. Ramshaw JD (1996) J Non-Equilib Thermodyn 21:233

    MATH  Google Scholar 

  25. Andre P, Aubreton J, Elchinger MF, Rat V, Fauchais P, Lefort A, Murphy AB (2004) Plasma Chem Plasma Process 24:435

    Article  Google Scholar 

  26. Chen X, Han P (1999) J Phys D Appl Phys 32:1711

    Article  ADS  Google Scholar 

  27. van de Sanden MCM, Schram PPJM, Peeters AG, van der Mullen JAM, Kroesen GMW (1989) Phys Rev A 40:5273

    Article  ADS  Google Scholar 

  28. Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  29. Ferziger JH, Kaper HG (1972) Mathetical theory of transport processes in gases. North Holland, Amsterdam

    Google Scholar 

  30. Devoto RS (1966) Phys Fluids 9:1230

    Article  ADS  Google Scholar 

  31. Levin E, Patridge H, Stallcop JR (1990) J Thermophysics 4:469

    Article  ADS  Google Scholar 

  32. Yun KS, Mason EA (1962) Phys Fluid 5:380

    Article  ADS  Google Scholar 

  33. Stallcop JR, Patridge H, Levin E (1991) J Chem Phys 95:6429

    Article  ADS  Google Scholar 

  34. Devoto RS (1976) Phys Fluid 19:22

    Article  ADS  Google Scholar 

  35. Liboff RI (1959) Phys Fluid 2:40

    Article  MATH  ADS  Google Scholar 

  36. Murphy AB (1993) Phys Rev E 48:3594

    Article  ADS  Google Scholar 

  37. Li HP, Chen X (2001) Chin Phys Lett 18:547

    Article  ADS  Google Scholar 

  38. Bose TK, Kannappan D, Seeniraj RV (1985) Warme-und Stoffubertragung 19:3

    Article  ADS  Google Scholar 

  39. Krinberg IA (1965) High Temp (USSR) 3:606

    Google Scholar 

  40. Yos JM (1965) Report RAD TF-65, AVCO Corporation, Wilmington, Massachusetts

  41. Neumann W, Sacklowski U (1968) Beitr Plasma Phys 8:57

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hypertherm Inc. for financial support. One of the authors (S. Ghorui) is thankful to Department of Atomic Energy, India for grant of leave for post-doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghorui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorui, S., Heberlein, J.V.R. & Pfender, E. Thermodynamic and Transport Properties of Two-temperature Oxygen Plasmas. Plasma Chem Plasma Process 27, 267–291 (2007). https://doi.org/10.1007/s11090-007-9053-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9053-7

Keywords

Navigation