Skip to main content
Log in

Impact of Electron–Electron Collisions on the Spatial Electron Relaxation in Non-Isothermal Plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

The impact of electron–electron collisions on the spatial relaxation of electrons in the column-anode plasma of a glow discharge, acted upon by a space-independent electric field and initiated by a constant influx at the cathode side of the plasma, is investigated in inert gas plasmas. The investigations are based on a new method for numerically solving the one-dimensional inhomogeneous Boltzmann equation of the electrons including electron–electron interaction in weakly ionized, collision-dominated plasmas. A detailed analysis of the spatial behaviour of the velocity distribution function and relevant macroscopic properties of the electrons is given for various degrees of ionization and electric field strengths. A significant impact of the electron–electron collisions on the relaxation structure and the resultant relaxation length already at relatively low ionization degrees has been found for low to medium electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Tsendin (1995) Plasma Sources Sci. Technol 4 200 Occurrence Handle10.1088/0963-0252/4/2/004

    Article  Google Scholar 

  2. V.I. Kolobov V.A. Godyak (1995) IEEE Trans. Plasma Sci 23 503 Occurrence Handle10.1109/27.467971

    Article  Google Scholar 

  3. P. Segur A. Alkaa S. Pineau A. Zahraoui A. Chouki C. Moutarde S. Laffont (1995) Plasma Sources Sci. Technol 4 183 Occurrence Handle10.1088/0963-0252/4/2/003

    Article  Google Scholar 

  4. R. Winkler G. Petrov F. Sigeneger D. Uhrlandt (1997) Plasma Sources Sci. Technol 6 118 Occurrence Handle10.1088/0963-0252/6/2/005

    Article  Google Scholar 

  5. R. Winkler (2000) NoChapterTitle K. H. Becker M. Inokuti (Eds) in Advances in Atomic, Molecular, and Optical Physics NumberInSeriesVol. 43 Academic Press San Diego 19–77

    Google Scholar 

  6. R.E. Robson B. Li R.D. White (2000) J. Phys. B: At Mol. Opt. Phys 33 507 Occurrence Handle10.1088/0953-4075/33/3/318

    Article  Google Scholar 

  7. R. Winkler (1972) Beitr. Plasmaphys 12 193

    Google Scholar 

  8. R. Winkler (1973) Ann. Phys 29 37

    Google Scholar 

  9. R. Winkler J. Wilhlem M. Capitelli C. Gorse (1992) Plasma Chem. Plasma Process 12 71 Occurrence Handle10.1007/BF01447945

    Article  Google Scholar 

  10. S.D. Rockwood (1973) Phys. Rev. A 8 2348 Occurrence Handle10.1103/PhysRevA.8.2348

    Article  Google Scholar 

  11. F. Sigeneger R. Winkler (1997) Plasma Chem. Plasma Process 17 1

    Google Scholar 

  12. F. Sigeneger R. Winkler (1997) Plasma Chem. Plasma Process 17 281

    Google Scholar 

  13. G. Petrov R. Winkler (1997) J. Phys. D: Appl. Phys 30 53 Occurrence Handle10.1088/0022-3727/30/1/008

    Article  Google Scholar 

  14. F. Sigeneger R. Winkler (1996) Contrib. Plasma Phys 36 551

    Google Scholar 

  15. I.P. Shkarofsky T.W. Johnston M.P. Bachynski (1966) The Particle Kinetics of Plasmas Addison-Wesley London

    Google Scholar 

  16. D. Loffhagen F. Sigeneger R. Winkler (2002) J. Phys. D: Appl. Phys 35 1768 Occurrence Handle10.1088/0022-3727/35/14/319

    Article  Google Scholar 

  17. W.C. Fon K.A. Berrington A. Hibbert (1981) J. Phys. B: At. Mol. Phys 14 307 Occurrence Handle10.1088/0022-3700/14/2/014

    Article  Google Scholar 

  18. J. Mitroy (1990) Aust. J. Phys 43 19

    Google Scholar 

  19. L.T. Specht S.A. Lawton T.A. DeTemple (1980) J Appl. Phys 51 166 Occurrence Handle10.1063/1.327395

    Article  Google Scholar 

  20. F.J. Heer Particlede R.H.J. Jansen W. Kaay Particlevan der (1979) J Phys. B: At. Mol. Phys 12 979 Occurrence Handle10.1088/0022-3700/12/6/016

    Article  Google Scholar 

  21. R.C. Wetzel FA. Baiocchi T.R. Hayes R.S. Freund (1987) Phys. Rev. A 35 559 Occurrence Handle10.1103/PhysRevA.35.559 Occurrence Handle9898176

    Article  PubMed  Google Scholar 

  22. M. Hayashi, in Plasma Material Science Handbook, Japan Society for the Promotion of Science ed., Ohmsha, Ltd, Tokyo, 1992, pp. 748–766

  23. L.T.S.F. Lam (1982) J. Phys. B: At. Mol. Phys 15 119 Occurrence Handle10.1088/0022-3700/15/1/020

    Article  Google Scholar 

  24. M. Hayashi (1983) J. Phys. D: Appl. Phys 16 581 Occurrence Handle10.1088/0022-3727/16/4/018

    Article  Google Scholar 

  25. V. Puech S. Mizzi (1991) J. Phys. D: Appl. Phys 24 1974 Occurrence Handle10.1088/0022-3727/24/11/011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Loffhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loffhagen, D. Impact of Electron–Electron Collisions on the Spatial Electron Relaxation in Non-Isothermal Plasmas. Plasma Chem Plasma Process 25, 519–538 (2005). https://doi.org/10.1007/s11090-005-4997-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-005-4997-y

Keywords

Navigation