Skip to main content
Log in

Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Addressing the Role of Water Vapor on Long-Term Stainless Steel Oxidation Behavior

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In the past 20 years, it has become clear that the long-term exposure of chromia-forming austenitic stainless steels to air containing ~ 10 vol% water vapor at 650–800 °C significantly increases the Cr consumption rate compared to laboratory air. However, a similar acceleration does not occur in 100% steam because O2 is not available to form volatile CrO2(OH)2. This accelerated Cr loss is particularly important for thin-walled components like gas turbine recuperators. Typically, conventional austenitic stainless steels exhibit accelerated attack (i.e., rapid formation of Fe-rich oxide nodules), while higher alloyed steels resist this type of degradation until the alloy surface becomes Cr depleted. The development of strategies and solutions for this issue are reviewed. Model Fe–Cr–Ni alloys have been used to study composition effects on this behavior. For example, increasing the Mn content up to ~ 4 wt% was not beneficial, but increasing the Ni content improved oxidation resistance in this environment. However, at 650–700 °C even highly alloyed steels showed surface Cr depletion at alloy grain boundaries resulting in Fe-rich oxide nodule formation. The path forward for this issue will require more refined mechanistic understanding and increased used of modeling to develop better application-specific lifetime models to identify the most cost-effective alloy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Kofstad, in Microscopy of Oxidation I, M. J. Bennett and G. W. Lorimer eds. Institute of Metals, London (1991) p. 2.

  2. I. Kvernes, M. Olivera and P. Kofstad, Corrosion Science 17, 237 (1977).

    Article  CAS  Google Scholar 

  3. T. Norby and P. Kofstad, Journal of the American Ceramic Society 67, 786 (1984).

    Article  CAS  Google Scholar 

  4. A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994).

    Article  CAS  Google Scholar 

  5. K. L. More, P. F. Tortorelli, L. R. Walker, N. Miriyala, J. R. Price and M. van Roode, Journal of the American Ceramic Society 86, 1272 (2003).

    Article  CAS  Google Scholar 

  6. C. F. McDonald, Applied Thermal Engineering 23, 1463 (2003).

    Article  Google Scholar 

  7. P. J. Maziasz and R. W. Swindeman, Journal of Engineering for Gas Turbines and Power 125, 51 (2003).

    Article  Google Scholar 

  8. S. L. Hamilton, Modern Power Systems 19, (9), 21 (1999).

    Google Scholar 

  9. S. L. Hamilton, The Handbook of Microturbine Generators, (PennWell Corp, Tulsa, 2003).

    Google Scholar 

  10. B. A. Pint, Materials Science and Technology 30, 1387 (2014).

    Article  CAS  Google Scholar 

  11. J. M. Rakowski and B. A. Pint, NACE Paper 00-517, Houston, TX, (2000) presented at NACE Corrosion 2000, Orlando, FL, March 2000.

  12. B. A. Pint, Journal of Engineering for Gas Turbines and Power 128, 370 (2006).

    Article  CAS  Google Scholar 

  13. D. Caplan and M. Cohen, Corrosion 15, 57 (1959).

    Article  Google Scholar 

  14. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).

    Article  CAS  Google Scholar 

  15. N. Otsuka, Y. Shida and H. Fujikawa, Oxidation of Metals 32, 13 (1989).

    Article  CAS  Google Scholar 

  16. D. R. Sigler, Oxidation of Metals 46, 335 (1996).

    Article  CAS  Google Scholar 

  17. H. Nickel, Y. Wouters, M. Thiele and W. J. Quadakkers, Fresenius Journal of Analytical Chemistry 361, 540 (1998).

    Article  CAS  Google Scholar 

  18. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  19. S. Henry, A. Galerie and L. Antoni, Materials Science Forum 369–372, 353 (2001).

    Article  Google Scholar 

  20. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  CAS  Google Scholar 

  21. W. J. Quadakkers, J. Żurek and M. Hänsel, JOM 61, (7), 44 (2009).

    Article  CAS  Google Scholar 

  22. W. J. Matthews, K. L. More and L. R. Walker, Journal of Engineering for Gas Turbines and Power 132, (2), 022302 (2010).

    Article  Google Scholar 

  23. M. P. Brady, G. Muralidharan, D. N. Leonard, J. A. Haynes, R. G. Weldon and R. D. England, Oxidation of Metals 82, 359 (2014).

    Article  CAS  Google Scholar 

  24. I. Stambler, Gas Turbine World Feb-Mar 12 (2004).

  25. W. J. Matthews, T. Bartel, D. L. Klarstrom and L. R. Walker, ASME Paper #GT2005-68781, New York, (2005) presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Reno-Tahoe, NV, June 2005.

  26. B. A. Pint, R. Peraldi and P. J. Maziasz, Materials Science Forum 461–464, 799 (2004).

    Article  Google Scholar 

  27. R. Peraldi and B. A. Pint, Oxidation of Metals 61, 463 (2004).

    Article  CAS  Google Scholar 

  28. E. J. Opila, Materials Science Forum 461–464, 765 (2004).

    Article  Google Scholar 

  29. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  CAS  Google Scholar 

  30. R. Sachitanand, M. Sattari, J.-E. Svensson and J. Froitzheim, International Journal of Hydrogen Energy 38, 15328 (2013).

    Article  CAS  Google Scholar 

  31. B. A. Pint, ASME Paper #GT2005-68495, presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Reno-Tahoe, NV, June 6-9, 2005.

  32. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

  33. P. J. Maziasz, R. W. Swindeman, J. P. Montague, M. Fitzpatrick, P. F. Browning, J. F. Grubb and R. C. Klug, Materials at High Temperature 16, 207 (1999).

    Article  CAS  Google Scholar 

  34. B. A. Pint, S. Dryepondt, M. P. Brady, Y. Yamamoto, B. Ruan and R. D. McKeirnan, Journal of Engineering for Gas Turbines and Power 138, (12), 122001 (2016).

    Article  Google Scholar 

  35. K. Tamura, T. Sato, Y. Fukuda, K. Mitsuhata, H. Yamanouchi, in Heat Resistant Materials II, K. Natesan, P. Ganesan and G. Lai eds. ASM Int., Materials Park, OH (1995) p. 33.

  36. W. J. Quadakkers, T. Malkow, J. Piron-Abellan, U. Flesch, V. Shemet and L. Singheiser, in Proceedings of 4th Europain Solid Oxide Fuel Cell Forum, Vol. 2, A. J. McEvoy ed. Elsevier, Amsterdam (2000) p. 827.

  37. B. A. Pint, Oxidation of Metals 45, 1 (1996).

    Article  CAS  Google Scholar 

  38. W. J. Quadakkers and L. Singheiser, Materials Science Forum 369–372, 77 (2001).

    Article  Google Scholar 

  39. S. Chevalier, Materials and Corrosion 65, 109 (2014).

    Article  CAS  Google Scholar 

  40. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, 1 (2016).

    Article  CAS  Google Scholar 

  41. B. Tveten, G. Hultquist and D. Wallinder, Oxidation of Metals 55, 279 (2001).

    Article  CAS  Google Scholar 

  42. D. R. Baer and M. D. Merz, Metallurgical Transactions A 11, 1973 (1980).

    Article  Google Scholar 

  43. M. J. Maloney: Ph.D. Thesis, (Massachusetts Institute of Technology, Cambridge, MA 1989).

  44. N. Otsuka and H. Fujikawa, Corrosion 47, 240 (1991).

    Article  CAS  Google Scholar 

  45. Zs. Tökei, K. Hennesen, H. Viefhaus and H. J. Grabke, Materials Science & Technology 16, 1129 (2000).

  46. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 48, 2014 (2006).

    Article  CAS  Google Scholar 

  47. P. J. Maziasz, R. W. Swindeman, J. P. Shingledecker, K. L. More, B. A. Pint, E. Lara-Curzio and N. D. Evans, in Parsons 2003, Engineering Issues in Turbine Machinery, Power Plant and Renewables, A. Strang, et al. eds., Maney, London, 2003, pp. 1057-73.

  48. J. M. Rakowski, C. P. Stinner, M. Lipschutz and J. P. Montague, ASME Paper #GT2004-53917 presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Vienna, Austria, June 14-17, 2004.

  49. P. J. Maziasz, J. P. Shingledecker, N. D. Evans, Y. Yamamoto, K. L. More, R. Trejo and E. Lara-Curzio, Journal of Engineering for Gas Turbines and Power 129, 798 (2007).

    Article  CAS  Google Scholar 

  50. M. D. Bender and R. C. Klug, ASME Paper #GT2014-25334, presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Düsseldorf, Germany, June 16–20, 2014.

  51. N. Otsuka, Y. Nishiyama and T. Kudo, Oxidation of Metals 62, 121 (2004).

    Article  CAS  Google Scholar 

  52. D. A. Guzonas and W. G. Cook, Corrosion Science 65, 48 (2012).

    Article  CAS  Google Scholar 

  53. B. A. Pint, S. Dryepondt, A. Rouaix-Vande Put and Y. Zhang, JOM 64, 1454 (2012).

  54. M. Kikuchi, M. Sakakibara, Y. Otoguro, H. Mimura, S. Araki and T. Fujita, in High Temperature Alloys, Their Exploitable Potential, eds. J. B. Marriott, M. Merz, J. Nihoul and J. Ward, 1985, Elsevier, London, p. 267-276.

  55. H. E. Evans, D. A. Hilton and R. A. Holm, Oxidation of Metals 10, 149 (1976).

    Article  CAS  Google Scholar 

  56. H. E. Evans and R. C. Lobb, Corrosion Science 24, 209 (1984).

    Article  CAS  Google Scholar 

  57. H. E. Evans, International Materials Review 40, 1 (1995).

    Article  CAS  Google Scholar 

  58. B. A. Pint and P. J Maziasz, NACE Paper 05-449, Houston, TX, presented at NACE Corrosion 2005, Houston, TX, April 2005.

  59. S. Dryepondt and B. A. Pint, ASME Paper #GT2019-90927, for the International Gas Turbine & Aeroengine Congress & Exhibition, Phoenix, AZ, June 17-21, 2019.

  60. Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer and E. A. Payzant, Science 316, 433 (2007).

    Article  CAS  Google Scholar 

  61. H. Asteman, J.-E. Svensson, L.-G. Johansson and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  62. A. Yamauchi, K. Kurokawa and H. Takahashi, Oxidation of Metals 59, 517 (2003).

    Article  CAS  Google Scholar 

  63. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  CAS  Google Scholar 

  64. B. A. Pint and I. G. Wright, Oxidation of Metals 63, 193 (2005).

    Article  CAS  Google Scholar 

  65. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperature 20, 115 (2003).

    CAS  Google Scholar 

  66. J. W. Fergus, Materials Science and Engineering A 397, 271 (2005).

    Article  Google Scholar 

  67. A. S. Nagelberg and R. W. Bradshaw, Journal of the Electrochemical Society 128, 2655 (1981).

    Article  CAS  Google Scholar 

  68. G. J. Yurek, D. Eisen and A. Garratt-Reed, Metallurgical Transactions A 13, 473 (1982).

    Article  Google Scholar 

  69. E. O. Mogire, R. L. Higginson, A. T. Fry and R. C. Thomson, Materials at High Temperature 28, 361 (2011).

    Article  CAS  Google Scholar 

  70. B. A. Pint and K. A. Unocic, Oxidation of Metals 87, 515 (2017).

    Article  CAS  Google Scholar 

  71. E. Essuman, L. R. Walker, P. J. Maziasz and B. A. Pint, Materials Science and Technology 29, 822 (2013).

    Article  CAS  Google Scholar 

  72. J. P. Sauer, R. A. Rapp and J. P. Hirth, Oxidation of Metals 18, 285 (1982).

    Article  CAS  Google Scholar 

  73. A. L. Marasco and D. J. Young, Oxidation of Metals 36, 157 (1991).

    Article  CAS  Google Scholar 

  74. R. L. Klueh, P. J. Maziasz and E. H. Lee, Materials Science and Engineering 102, 115 (1988).

    Article  Google Scholar 

  75. M. G. E. Cox, B. McEnaney and V. D. Scott, Philosophical Magazine 26, 839 (1972).

    Article  CAS  Google Scholar 

  76. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  CAS  Google Scholar 

  77. B. A. Pint and K. B. Alexander, Journal of the Electrochemical Society 145, 1819 (1998).

    Article  CAS  Google Scholar 

  78. X. Zhang, J. E. O’Brien, R. C. O’Brien, J. J. Hartvigsen, G. Tao and G. K. Housley, International Journal of Hydrogen Energy 38, 20, (2013).

    Article  Google Scholar 

  79. W. Assassa, P. Guiraldenq, Metal Science 12, (3), 123 (1978).

  80. R. C. Lobb, J. A. Sasse and H. E. Evans, Materials Science and Technology 5, 828 (1989).

    Article  CAS  Google Scholar 

  81. B. A. Pint, R. W. Swindeman, K. L. More and P. F. Tortorelli, ASME Paper #2001-GT-445, presented at the International Gas Turbine & Aeroengine Congress & Exhibition, New Orleans, LA, June 4-7, 2001.

  82. A. J. Strutt and K. S. Vecchio, Metallurgical and Materials Transactions A 30, 355 (1999).

    Article  Google Scholar 

  83. A. S. Sabau and I. G. Wright, Oxidation of Metals 73, 467 (2010).

    Article  CAS  Google Scholar 

  84. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 55, 825 (2004).

    Article  CAS  Google Scholar 

  85. D. J. Young, A. Chyrkin and W. J. Quadakkers, Oxidation of Metals 77, 253 (2012).

    Article  CAS  Google Scholar 

  86. R. Pillai, H. Ackermann and K. Lucka, Corrosion Science 69, 181 (2013).

    Article  CAS  Google Scholar 

  87. R. Duan, A. Jalowicka, K. A. Unocic, B. A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai and W. J. Quadakkers, Oxidation of Metals 87, 11 (2017).

    Article  CAS  Google Scholar 

  88. R. Pillai, S. Dryepondt and B. A. Pint, ASME Paper #GT2019-90505, for the International Gas Turbine & Aeroengine Congress & Exhibition, Phoenix, AZ, June 17-21, 2019.

  89. P. Huczkowski, W. Lehnert, H.-H. Angermann, A. Chyrkin, R. Pillai, D. Grüner, E. Hejrani and W. J. Quadakkers, Materials and Corrosion 68, 159 (2017).

    Article  CAS  Google Scholar 

  90. T. Sand, C. Geers, Y. Cao, J. E. Svensson and L. G. Johansson, Oxidation of Metals 92, 259 (2019).

    Article  CAS  Google Scholar 

  91. J. Michalski, U. Bünger, F. Crotogino, S. Donadei, G.-S. Schneider, T. Pregger, K.-K. Cao and D. Heide, International Journal of Hydrogen Energy 42, 13427 (2017).

    Article  CAS  Google Scholar 

  92. M. R. Keenan, in Techniques and applications of hyperspectral image analysis, eds. H. F. Grahn and P. Geladi (Wiley, New York, 2007), pp. 89–126.

Download references

Acknowledgements

I would like to thank J. D. Vought, L. D. Chitwood, J. Moser, K. Reeves, T. Lowe, G. Garner and H. Longmire at ORNL for assistance with the experimental work and many conversations with I. G. Wright, P. F. Tortorelli and P. J. Maziasz on this subject. S. Dryepondt, M. Romedenne, R. Pillai and P. F. Tortorelli provided many helpful comments on the manuscript. Special thanks are due to Solar Turbines (P. Montague, M. Fitzpatrick, R. Klug), Capstone Turbine Corporation (W. Matthews, D. Vicario) and ATI Allegheny Ludlum (J. Rakowski) for providing commercial foil for testing as well as J. Nash, J. Kesseli and J. Armstrong (formerly Ingersoll Rand); all of these industrial collaborators generously provided many beneficial interactions over the past 25 years, beginning when I was serendipitously introduced to this problem at a meeting that none of my more senior co-workers could attend. This research has been strongly supported by U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, Combined Heat and Power Program and previously under the DOE Distributed Energy Program and initially under a cooperative research agreement with Solar Turbines, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Pint.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A. Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Addressing the Role of Water Vapor on Long-Term Stainless Steel Oxidation Behavior. Oxid Met 95, 335–357 (2021). https://doi.org/10.1007/s11085-020-10012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10012-9

Keywords

Navigation