Skip to main content
Log in

Use of Microanalysis to Better Understand the High-Temperature Corrosion Behavior of Chromium Exposed to Multi-Oxidant Environments

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of metals and alloys at high temperatures in complex multi-oxidant environments is of a great interest for achieving extended service performances and improved operation efficiencies. In this basic study, the scaling reactions of pure chromium in several multi-oxidant gas mixtures were assessed. The environments studied are similar to those that exist in low-NOx burner and coal gasification atmospheres, which are very reducing and favor sulfidation and carburization, together with possible formation of Cr2O3. The effect of sulfur on chromia-scale growth kinetics was also considered. Isothermal exposures were done for up to 100 h at 871 °C (1600 °F), and comparison was made to similar exposures to air. Exposed samples were characterized in detail using some combination of X-ray diffraction and electron beam scattering and spectroscopic techniques. It was found that chromia scales formed in mixed gases containing water vapor grew much faster and had a finer grain structure than those formed in dry air. Both inward growth and outward growth of the chromia scale were inferred for the mixed-gas conditions. The effect of a high carbon potential in the gas on the scaling behavior is also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. J. Grabke, Corrosion Science 56, 2000 (801).

    Article  Google Scholar 

  2. D. J. Young and S. Watson, Oxidation of Metals 44, 1995 (239).

    Article  Google Scholar 

  3. T. D. Nguyen, J. Q. Zhang and D. J. Young, Materials at High Temperatures 32, 2015 (16).

    Article  Google Scholar 

  4. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 1980 (363).

    Article  Google Scholar 

  5. M. H. LaBranche and G. J. Yurek, Oxidation of Metals 28, 1987 (73).

    Article  Google Scholar 

  6. K. Natesan, Corrosion-NACE 41, 1985 (646).

    Article  Google Scholar 

  7. A. Rahmel, M. Schorr, A. Velasco-Tellez and A. Pelton, Oxidation of Metals 27, 1987 (199).

    Article  Google Scholar 

  8. C. D. Asmundis, F. Gesmundo and C. Bottino, Oxidation of Metals 14, 1980 (351).

    Article  Google Scholar 

  9. F. Gesmundo, Oxidation of Metals 13, 1979 (237).

    Article  Google Scholar 

  10. M. A. Harper and J. P. Cotner, Oxidation of Metals 53, 2000 (427).

    Article  Google Scholar 

  11. J. A. Kneeshaw, The corrosion behavior of Fe–Cr–Ni alloys in complex high temperature gaseous atmospheres containing the reactants oxygen, sulphur and carbon. Doctoral Dissertation, Loughborough University, 1987.

  12. X. G. Zheng and D. J. Young, Materials Science Forum 251–254, 1997 (567).

    Article  Google Scholar 

  13. R. A. Perkins, in DOE, EPRI, GRI, NBS, Third Annual Conference on Materials for Coal Conversion and Utilization, October 10-12, 1978.

  14. M. F. Stroosnijder and W. J. Quadakkers, High Temperature Technology 4, 1986 (141).

    Article  Google Scholar 

  15. A. D. Smigelskas and E. O. Kirkendall, Transactions of AIME 171, 1947 (130).

    Google Scholar 

  16. H. Hindamtw and D. P. Whittle, Oxidation of Metals 18, 1982 (245).

    Article  Google Scholar 

  17. D. Caplan, A. Harvey and M. Cohen, Corrosion Science 3, 1963 (161).

    Article  Google Scholar 

  18. F. A. Golightly, G. C. Wood and F. H. Stott, Oxidation of Metals 14, 1980 (217).

    Article  Google Scholar 

  19. F. A. Golightly, F. H. Stott and G. C. Wood, Oxidation of Metals 10, 1976 (163).

    Article  Google Scholar 

  20. K. P. Lillerud and P. Kofstad, Journal of Electrochemical Society 127, 1980 (2397).

    Article  Google Scholar 

  21. P. Kofstad and K. P. Lillerud, Journal of Electrochemical Society 127, 1980 (2410).

    Article  Google Scholar 

  22. D. R. Gaskell, An Introduction to Transport Phenomena in Materials Engineering, (Macmillan, New York, 1992).

    Google Scholar 

  23. D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing, (The Minerals, Metals & Materials Society, Warrendale, 1994).

    Google Scholar 

  24. M. K. Næss, D. J. Young, J. Zhang, J. E. Olsen and G. Tranell, Oxidation of Metals 78, 2012 (363).

    Article  Google Scholar 

  25. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Oxford, 2008).

    Google Scholar 

  26. J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 2008 (259).

    Article  Google Scholar 

  27. D. J. Young, Materials Science Forum 595–598, 2008 (1189).

    Article  Google Scholar 

  28. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie and Y. Wouters, Oxidation of Metals 86, 2016 (497).

    Article  Google Scholar 

  29. M. Hänsel, L. Garcia-Fresnillo, S. L. Tobing and V. Shemet, Materials at High Temperatures 29, 2012 (187).

    Article  Google Scholar 

  30. A. Rahmel and J. Tobolski, Corrosion Science 5, 1965 (333).

    Article  Google Scholar 

  31. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1964 (1215).

    Article  Google Scholar 

  32. M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 2005 (213).

    Article  Google Scholar 

  33. A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–372, 2001 (231).

    Article  Google Scholar 

  34. H. J. Grabke, Materials Science and Engineering 42, 1980 (91).

    Article  Google Scholar 

  35. R. G. Olsson and E. T. Turkdogan, Metallurgical Transactions 5, 1974 (21).

    Google Scholar 

  36. T. A. Ramanarayanan, Materials Science and Engineering 87, 1987 (113).

    Article  Google Scholar 

  37. J. Barnes, J. Corish and J. F. Norton, Oxidation of Metals 26, 1986 (333).

    Article  Google Scholar 

  38. C. Wagner, Zeitschrift für Elektrochemie 63, 1959 (772).

    Google Scholar 

  39. A. Atkinson, Materials Science and Technology 4, 1988 (1046).

    Article  Google Scholar 

  40. A. C. S. Sabioni, A. M. Huntz, J. Philibert and B. Lesage, Journal of Materials Science 27, 1992 (4782).

    Article  Google Scholar 

  41. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 1992 (81).

    Article  Google Scholar 

  42. A. M. Huntz and S. C. Tsai, Journal of Materials Science Letters 13, 1994 (821).

    Article  Google Scholar 

  43. A. Atkinson, Reviews of Modern Physics 57, 1985 (437).

    Article  Google Scholar 

  44. A. H. Heuer, M. Zahiri Azar, H. Guhl, M. Foulkes, B. Gleeson, T. Nakagawa, Y. Ikuhara and M. W. Finnis, Journal of the American Ceramic Society 99, 2016 (733).

    Article  Google Scholar 

  45. T. Nakagawa, H. Nishimura, I. Sakaguchi, N. Shibata, K. Matsunaga, T. Yamamoto and Y. Ikuhara, Scripta Materialia 65, 2011 (544).

    Article  Google Scholar 

  46. I. Sakaguchi, V. Srikanth, T. Ikegami and H. Haneda, Journal of the American Ceramic Society 78, 1995 (2557).

    Article  Google Scholar 

  47. J. L. Meijering, in Advances in Materials Research, 5th ed, ed. H. Herman (Wiley-Interscience, New York, 1971).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Gerald Meier for helpful discussions and Dr. Sahar Farjami for technical assistance on EBSD sample preparation and microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satia Soltanattar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanattar, S., Nowakowski, P., Bonifacio, C.S. et al. Use of Microanalysis to Better Understand the High-Temperature Corrosion Behavior of Chromium Exposed to Multi-Oxidant Environments. Oxid Met 91, 11–31 (2019). https://doi.org/10.1007/s11085-018-9882-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9882-1

Keywords

Navigation