Skip to main content
Log in

Lanthanum Effect on the Isothermal High Temperature Oxidation Behavior at 1,000 °C of a Phosphoric Acid-Treated AISI 304 Stainless Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Many studies have shown that a phosphoric-acid treatment improves the high temperature oxidation resistance in air of some alloys. Interestingly, though, the phosphoric-acid treatment generates a structural modification of the steel surface which is catastrophic for the high-temperature oxidation behavior at 1,000 °C. The aim of our work was to test the effect of a reactive element sol–gel coating on high-temperature oxidation resistance of phosphoric acid-treated AISI 304 steel. The oxide scale growth mechanisms were studied by exposing La-coated and uncoated phosphoric acid-treated 304 steel samples to high-temperature conditions in air. A phosphoric-acid treatment modified the structural composition and the surface morphology of the AISI 304 steel by the formation of a FeH2P3O10 structure, leading to hematite formation and to a breakaway phenomenon. Lanthanum coating, after initial phosphoric-acid treatment, led to the formation of LaCrO3 which limited through-scale cracking and reduced the growth of iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Schumacher, F. Dettenwanger, M. Schütze, E. Richter, E. Wieser and W. Möller, Intermetallics 7, 1113 (1999).

    Article  Google Scholar 

  2. M. Kumagai, K. Shibue, M. Kim and M. Yonemitsu, Intermetallics 4, 557 (1956).

    Article  Google Scholar 

  3. S. Taniguchi, Materials Corrosion 48, 1 (1997).

    Article  Google Scholar 

  4. M. Hald and M. Schütze, Materials Science Engineering A 239–240, 847 (1997).

    Google Scholar 

  5. G. Schumacher, C. Lang, M. Schütze, U. Hornauer, E. Richter and E. Wieser, Materials Corrosion 50, 162 (1999).

    Article  Google Scholar 

  6. B. Panicaud, J. L. Grosseau-Poussard and S. Rebeyrat, Materials Science Engineering A 356, 434 (2003).

    Article  Google Scholar 

  7. W. B. Retallick, M. P. Brady and D. L. Humphrey, Intermetallics 6, 335 (1998).

    Article  Google Scholar 

  8. G. Schumacher, F. Dettenwanger, M. Schütze, A. Iberl and D. Reil, Oxidation of Metals 54, 317 (2000).

    Article  Google Scholar 

  9. S. Becker, A. Rahmel, M. Schon and M. Schütze, Oxidation of Metals 38, 425 (1992).

    Article  Google Scholar 

  10. S. Y. Brou, G. Bonnet and J. L. Grosseau-Poussard, Intermetallics 19, 887 (2011).

    Article  Google Scholar 

  11. S. Fontana, R. Amendola, S. Chevalier, G. Caboche and R. Molins, Journal of Power Sources 171, 652 (2007).

    Article  Google Scholar 

  12. S. M. C. Fernandes and L. V. Ramanathan, Journal of Thermal Analysis and Calorimetry 106, 541 (2011).

    Article  Google Scholar 

  13. J. S. Yoon, J. Lee, H. J. Hwang, C. M. Whang and D.-H. Kim, Journal of Power Sources 181, 281 (2008).

    Article  Google Scholar 

  14. G.-M. Zhao and K.-L. Wang, Surface and Coating Technology 190, 249 (2005).

    Article  Google Scholar 

  15. B. Gleeson and M. A. Harper, Oxidation of Metals 49, 373 (1998).

    Article  Google Scholar 

  16. M. Landkof, A. V. Levy, D. H. Boone, R. Gray and E. Yaniv, Corrosion-NACE 41, 344 (1985).

    Article  Google Scholar 

  17. P. Kofstad, A. Rahmel, R. A. Rapp and D. L. Douglass, Oxidation of Metals 32, 125 (1989).

    Article  Google Scholar 

  18. D. P. Moon and M. J. Bennett, Materials Science Forum 43, 269 (1989).

    Article  Google Scholar 

  19. I. M. Allam, D. P. Whittle and J. Stringer, Oxidation of Metals 13, 381 (1979).

    Article  Google Scholar 

  20. B. A. Pint, Oxidation of Metals 45, 1 (1996).

    Article  Google Scholar 

  21. A. Strawbridge, P.Y. Hou, Materials at High Temperature (Workshop on mechanical properties of protective oxide scales, Teddington Mddx., United Kingdom) 12, 177 (1994).

  22. M. F. Stroosnijder, V. Guttman, T. Fransen and J. H. W. De Wit, Oxidation of Metals 33, 371 (1990).

    Article  Google Scholar 

  23. S. K. Mitra, S. K. Roy and S. K. Bose, Oxidation of Metals 39, 221 (1993).

    Article  Google Scholar 

  24. J. Stringer, Materials Science Engineering A 120, 129 (1989).

    Article  Google Scholar 

  25. F. I. Wei and F. H. Stott, Corrosion Science 29, 839 (1989).

    Article  Google Scholar 

  26. I. M. Allam, D. P. Whittle and J. Stringer, Oxidation of Metals 12, 35 (1978).

    Article  Google Scholar 

  27. C. H. Yang, P. A. Labun, G. Welsch and T. E. Mitchell, Journal of Materials Science 22, 449 (1987).

    Article  Google Scholar 

  28. P. Y. Hou and J. Stringer, Oxidation of Metals 34, 299 (1990).

    Article  Google Scholar 

  29. E. A. Polman, T. Fransen and P. J. Gellings, Oxidation of Metals 33, 135 (1990).

    Article  Google Scholar 

  30. T. Zhang, W. W. Gerberich and D. A. Shores, Journal of Materials Research 12, 697 (1997).

    Article  Google Scholar 

  31. F. Czerwinski and J. A. Szpunar, Journal of Sol–gel Science and Technology 9, 103 (1997).

    Google Scholar 

  32. N. Karimi, F. Riffard, F. Rabaste, S. Perrier, C. Issartel and H. Buscail, Applied Surface Science 254, 2292 (2008).

    Article  Google Scholar 

  33. C. S. Tedmon, Journal of Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  34. H. C. Graham and H. H. Davis, Journal of the American Ceramic Society 54, 89 (1971).

    Article  Google Scholar 

  35. K. Segerdahl, J. E. Svensson and L. G. Johansson, Materials and Corrosion 53, 247 (2002).

    Article  Google Scholar 

  36. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  Google Scholar 

  37. A. Galerie, S. Henry, Y. Wouters, J. P. Petit and L. Antoni, Materials at High Temperature 21, 105 (2005).

    Google Scholar 

  38. F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel and S. Perrier, Materials Characterization 49, 55 (2002).

    Article  Google Scholar 

  39. A. Paúl, S. Elmrabet and J. A. Odriozola, Journal of Alloys and Compounds 323–324, 70 (2001).

    Article  Google Scholar 

  40. R. Berjoan, Revue Internationale Hautes Températures et Refractaires 13, 119 (1976).

    Google Scholar 

  41. S. Seal, S. K. Bose and S. K. Roy, Oxidation of Metals 41, 139 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Riffard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riffard, F., Fondard, J., Moulin, P. et al. Lanthanum Effect on the Isothermal High Temperature Oxidation Behavior at 1,000 °C of a Phosphoric Acid-Treated AISI 304 Stainless Steel. Oxid Met 81, 191–201 (2014). https://doi.org/10.1007/s11085-013-9455-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9455-2

Keywords

Navigation