Skip to main content
Log in

Oxidation of Micro-Sized Aluminium Particles: Hollow Alumina Spheres

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidized aluminium microparticles have recently been proposed for manufacturing new, environmentally-friendly, protective coatings on stainless-steels and Ni-base alloys. The oxidation mechanisms of spherical aluminium microparticles of an average particle size of 3.5 μm were studied. Accordingly, simultaneous differential thermal analysis–thermogravimetry tests were carried out in air at different temperatures, always above aluminium melting temperature. Scanning electron microscopy and XRD were also used for the interpretation of results. Weight gain and energy results were explained in terms of the different structural changes taking place in aluminium particles. Dehydroxylation process was identified. The transformation of amorphous alumina to γ-Al2O3 was numerically evaluated and the alumina phase transformation (γ-Al2O3→α-Al2O3) was also studied. The temperature ranges revealed the appearance of metastable phases (θ-Al2O3). Complete oxidation of particles can be obtained at 1,300 °C in <1 h, although this also takes place at lower temperatures if enough oxidation time is used. Activation energy of oxidation process at high temperature was also estimated, taking a value of 334 kJ/mol. High temperature oxidation causes the formation of hollow alumina spheres, without any aluminium left inside them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Bouchaud, J. Balmain and F. Pedraza, Oxidation of Metals 69, 193 (2008).

    Article  CAS  Google Scholar 

  2. M. A. Trunov, M. Schoenitz, X. Zhu and E. L. Dreizin, Combustion and Flame 140, 310 (2005).

    Article  CAS  Google Scholar 

  3. L. P. H. Jeurgens, W. G. Sloog, F. D. Tichelaar and E. J. Mittemeijer, Physical Review B 62, 4707 (2000).

    Article  CAS  Google Scholar 

  4. B. Rufino, F. Boulc’h, M. V. Coulet, G. Lacroix and R. Denoyel, Acta Materialia 55, 2815 (2007).

    Article  CAS  Google Scholar 

  5. S. Hasani, M. Panjepour and M. Shamanian, Oxidation of Metals 78, 179 (2012).

    Article  CAS  Google Scholar 

  6. M. A. Trunov, M. Schoenitz and E. L. Dreizin, Combustion Theory and Modelling 10, 603 (2006).

    Article  CAS  Google Scholar 

  7. J. F. García, S. Sánchez and R. Metz, Oxidation of Metals 69, 317 (2008).

    Article  Google Scholar 

  8. J. F. García-Martín, S. Sánchez and R. Metz, Oxidation of Metals 77, 1 (2012).

    Article  Google Scholar 

  9. B. Rannou, M. Mollard, B. Bouchaud, J. Balmain, G. Bonnet, V. Kolarik and F. Pedraza, Defect and Diffusion Forum 323–325, 373 (2012).

    Article  Google Scholar 

  10. F. Pedraza, M. Mollard, B. Rannou, J. Balmain, B. Bouchaud and G. Bonnet, Materials Chemistry and Physics 134, 700 (2012).

    Article  CAS  Google Scholar 

  11. M. Mollard, B. Rannou, B. Bouchaud, J. Balmain, G. Bonnet and F. Pedraza, Corrosion Science 66, 118 (2013).

    Article  CAS  Google Scholar 

  12. www.particoat.eu. Accessed April 2013.

  13. B. Rannou, F. Velasco, S. Guzmán, V. Kolarik and F. Pedraza, Materials Chemistry and Physics 134, 360 (2012).

    Article  CAS  Google Scholar 

  14. Y. F. Ivanov, M. N. Osmonoliev, V. S. Sedoi, V. A. Arkhipov, S. S. Bondarchuk, A. B. Vorozhstov, A. G. Korotkikh and V. T. Kuznetsov, Propellants, Explosives, Pyrotechnics 31, 401 (2006).

    Article  Google Scholar 

  15. J. K. Odusote, L. A. Cornish and L. H. Chownand, Corrosion Science 63, 119 (2012).

    Article  CAS  Google Scholar 

  16. R. Baboian (ed.), Corrosion Test and Standards Manual, (ASTM Manual Series, Fredericksburg, 1995), p. 149.

    Google Scholar 

  17. F. Velasco, A. González-Centeno and A. Bautista, Materials Science Forum 461–464, 1149 (2004).

    Article  Google Scholar 

  18. F. Velasco, A. Bautista and A. González-Centeno, Corrosion Science 51, 21 (2009).

    Article  CAS  Google Scholar 

  19. C. Moral and A. Bautista, Materials Science Forum 727–728, 108 (2012).

    Article  Google Scholar 

  20. D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions 38A, 2974 (2012).

    Google Scholar 

  21. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  22. N. Babu, R. Balasubramaniam and A. Ghosh, Corrosion Science 43, 2239 (2001).

    Article  CAS  Google Scholar 

  23. M. A. Montealegre, J. L. González-Carrasco and M. A. Muñoz-Morris, Intermetallics 9, 487 (2001).

    Article  CAS  Google Scholar 

  24. Y. Wang, J. Xiong, J. Yan, H. Fan and J. Wang, Surface and Coatings Technology 206, 1277 (2011).

    Article  CAS  Google Scholar 

  25. V. Kolarik, M. Juez-Lorenzo and H. Fietzek, Materials Science Forum 696, 290 (2011).

    Article  CAS  Google Scholar 

  26. D. Naumenko, W. J. Quadakkers, A. Galerie, Y. Wouters and S. Jourdain, Materials at High Temperatures 20, 287 (2003).

    Article  CAS  Google Scholar 

  27. M. Schoenitz, B. Patel, O. Agboh and E. L. Dreizin, Thermochimica Acta 507–508, 115 (2010).

    Article  Google Scholar 

  28. N. Eisenreich, H. Fietzek, M. M. Juez-Lorenzo, V. Kolarik, A. Koleczko and V. Weiser, Propellants, Explosives, Pyrotechnics 29, 137 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported under the Project PARTICOAT (FP7-NMP-LARGE-211329) funded by the European Union. All of the colleagues involved in the Project are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Velasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, F., Guzmán, S., Moral, C. et al. Oxidation of Micro-Sized Aluminium Particles: Hollow Alumina Spheres. Oxid Met 80, 403–422 (2013). https://doi.org/10.1007/s11085-013-9408-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9408-9

Keywords

Navigation