Skip to main content
Log in

Complete Oxidation of Zinc Powder. Validation of Kinetics Models

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The kinetics of complete oxidation of different samples of zinc powder by air has been investigated by thermogravimetric measurements under isothermal conditions in the range 973–1,173 K. Particles size was in the 63–80 μm range. We succeeded in carrying out the full oxidation of the powders far above the zinc-metal melting point (692.6 K). This phenomenon is linked to the presence of a thin ZnO layer which confines the liquid metal during the oxidation process. Two kinetics models have been verified. The apparent activation energies obtained from the Arrhenius law were 128 kJ mol−1 and 129 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Clarke, Journal of the American Ceramic Society 82(3), 485 (1999).

    CAS  Google Scholar 

  2. R. Metz, H. Delalu, J. R. Vignalou, N. Achard, and M. Elkhatib, Materials Chemistry and Physics 63, 157 (2000).

    Article  CAS  Google Scholar 

  3. R. Metz, C. Machado, M. Houabes, M. Elkhatib, and M. Hassanzadeh, Journal of Materials Processing Technology 195(1–3), 248 (2008).

    Article  CAS  Google Scholar 

  4. J. Clayton, H. Takamura, R. Metz, H. Tuller, and B. Wuensch, Journal of Electroceramics 7(2), 113 (2001).

    CAS  Google Scholar 

  5. J. Benard, L’oxydation des métaux, processus fondamentaux (I) (Gauthier-Villars, Paris, 1962).

  6. C. Tuck, M. Whitehead, and R. Smallman, Corrosion Science 21, 333 (1981).

    Article  CAS  Google Scholar 

  7. V. I. Dybkov, Growth Kinetics of Chemical Compound Layers (Cambridge International Science Publishing, Cambridge, England, 1998).

    Google Scholar 

  8. H. Delalu, J. R. Vignalou, M. Elkhatib, and R. Metz, Solid State Sciences 2(2), 229 (2000).

    Article  CAS  Google Scholar 

  9. C. Machado, S. Aidel, M. Elkhatib, H. Delalu, and R. Metz, Solid State Ionics 149, 147 (2002).

    Article  CAS  Google Scholar 

  10. M. L. Zheludkevich, A. G. Gusakov, A. G. Voropaev, A. A. Vecher, E. N. Kozyrski, and S. A. Raspopov, Oxidation of Metals 61, 39 (2004).

    Article  CAS  Google Scholar 

  11. A. Rai, K. Park, L. Zhou, and M. R. Zachariah, Combustion Theory and Modelling 10, 843 (2006).

    Article  CAS  Google Scholar 

  12. A. G. Gusakov, A. G. Voropaev, M. L. Zheludkevich, A. A. Vecher, and S. A. Raspopov, Physical Chemistry Chemical Physics 1, 5311 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude to Socrates-Erasmus Student Mobility Program since one of us obtained a grant between Jaén University (Spain) and Lyon1 University (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, J.F., Sánchez, S. & Metz, R. Complete Oxidation of Zinc Powder. Validation of Kinetics Models. Oxid Met 69, 317–325 (2008). https://doi.org/10.1007/s11085-008-9099-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9099-9

Keywords

Navigation