Skip to main content
Log in

Effect of Water Vapor on the Spallation of Thermal Barrier Coating Systems During Laboratory Cyclic Oxidation Testing

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of water and water vapor on the lifetime of Ni-based superalloy samples coated with a typical thermal barrier coating system—β-(Ni,Pt)Al bond coat and yttria stabilized zirconia (YSZ) top coat deposited by electron beam physical vapor deposition (EB-PVD) was studied. Samples were thermally cycled to 1,150 °C and subjected to a water-drop test in order to elucidate the effect of water vapor on thermal barrier coating (TBC) spallation. It was shown that the addition of water promotes spallation of TBC samples after a given number of cycles at 1,150 °C. This threshold was found to be equal to 170 cycles for the present system. Systems based on β-NiAl bond coat or on Pt-rich γ/γ′ bond coat were also sensitive to the water-drop test. Moreover, it was shown that water vapor in ambient air after minutes or hours at room temperature, promotes also TBC spallation once the critical number of cycles has been reached. This desktop spalling (DTS) can be prevented by locking up the cycled samples in a dry atmosphere box. These results for TBC systems confirm and document Smialek’s theory about DTS and moisture induced delayed spalling (MIDS) being the same phenomenon. Finally, the mechanisms implying hydrogen embrittlement or surface tension modifications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  2. J. L. Smialek, Report NASA/TM—2005-214030 (2005), pp. 36.

  3. B. A. Pint, J. A. Haynes, Y. Zhang, K. L. More, and I. G. Wright, Surface & Coating Technology 201, 3852 (2006).

    Article  CAS  Google Scholar 

  4. M. Rudolphi, D. Renusch, and M. Schütze, Scripta Materialia 59, 255 (2008).

    Article  CAS  Google Scholar 

  5. J. L. Smialek, D. Zhu, and M. D. Cuy, Scripta Materialia 59, 67 (2008).

    Article  CAS  Google Scholar 

  6. E. P. George, C. T. Liu, H. Lin, and D. P. Pope, Materials Science and Engineering A192/193, 277 (1995).

    CAS  Google Scholar 

  7. J. L. Smialek, Materials Science Forum 595–598, 191 (2008).

    Article  Google Scholar 

  8. R. T. Wu, K. Kawagishi, H. Harada, and R. C. Reed, Acta Materialia 56, 3622 (2008).

    Article  CAS  Google Scholar 

  9. J. L. Smialek, Report NASA CP 10193, 1 (1997).

  10. R. Janakiraman, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 30A, 2905 (1999).

    Article  CAS  Google Scholar 

  11. J. L. Smialek, JOM 1, 29 (2006).

    Article  Google Scholar 

  12. C. T. Liu, C. L. Fu, E. P. George, and G. S. Painter, ISIJ International 31, 1192 (1991).

    Article  CAS  Google Scholar 

  13. T. Takasugi, ISIJ International 143, 128 (2003).

    Google Scholar 

  14. Z.-Y. Deng, Y.-F. Liu, Y. Tanaka, J. Ye, and Y. Sakka, Journal of American Ceramic Society 88, 977 (2005).

    Article  CAS  Google Scholar 

  15. Z.-Y. Deng, Y.-F. Liu, Y. Tanaka, H.-W. Zhang, J. Ye, and Y. Kagawa, Journal of American Ceramic Society 88, 2975 (2005).

    Article  CAS  Google Scholar 

  16. Z.-Y. Deng, J. M. F. Ferreira, Y. Tanaka, and J. Ye, Journal of American Ceramic Society 90, 1521 (2007).

    Article  CAS  Google Scholar 

  17. G. L. Chen and C. T. Liu, International Materials Reviews 46, 253 (2001).

    Article  CAS  Google Scholar 

  18. D. Francois, A. Pineau, and A. Zaoui, Comportement mécanique des matériaux Tome 2: viscoplasticité, endommagement, rupture (2° Ed.), ed. Hermes-Lavoisier, (1993), pp. 496.

  19. H.-E. Zschau, M. Dietrich, D. Renusch, M. Schütze, J. Meijer, and H.-W. Becker, Nuclear Instruments and Methods in Physics Research Section B 249, 2006 (381).

    Article  CAS  ADS  Google Scholar 

  20. V. Sergo and D. R. Clarke, Journal of American Ceramic Society 81, 3237 (1998).

    Article  CAS  Google Scholar 

  21. V. Tolpygo and D. R. Clarke, Materials Science and Engineering. A278, 142 (2000).

    CAS  Google Scholar 

  22. D. Renusch, H. Echsler, and M. Schuetze, Materials at High Temperature 21, 65 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Monceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Déneux, V., Cadoret, Y., Hervier, S. et al. Effect of Water Vapor on the Spallation of Thermal Barrier Coating Systems During Laboratory Cyclic Oxidation Testing. Oxid Met 73, 83–93 (2010). https://doi.org/10.1007/s11085-009-9170-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9170-1

Keywords

Navigation