Skip to main content
Log in

Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating

  • Thermal and Structural Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The cyclic oxidation experiment of yttria-stabilized zirconia coatings deposited on NiCoCrAlYHf alloys by air plasma spraying was investigated at 1050 °C in air and in air containing water vapor. The results revealed that water vapor has a great influence on the oxidation resistance of the thermal barrier coatings (TBCs). Compared with the samples oxidized in air atmosphere, TBCs oxidized in air containing water vapor had a longer lifetime. It was also found that different atmospheres could lead to different HfO2 formation positions, which could decrease the rumpling in the oxide layer. In particular, after the coatings on Hf-doped NiCoCrAlY were first pretreated in air containing water vapor for 24 h at 1050 °C, the lifetime of the pretreated coating was doubled compared to the coating in laboratory air only. The water vapor pretreatment of the coatings could be an important method for optimizing the lifetime of TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. D.R. Clarke, M. Oechsner, and N.P. Padture: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37, 891–898 (2012).

    Article  CAS  Google Scholar 

  2. R. Darolia: Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 58, 315–348 (2013).

    Article  CAS  Google Scholar 

  3. M.J. Stiger, N.M. Yanar, M.G. Topping, F.S. Pettit, and G.H. Meier: Thermal barrier coatings for the 21st century. Z. Met. 90, 1069–1078 (1999).

    CAS  Google Scholar 

  4. M. Peters, C. Leyens, U. Schulz, and W.A. Kaysser: EB-PVD thermal barrier coatings for aeroengines and gas turbines. Adv. Eng. Mater. 3, 193–204 (2001).

    Article  CAS  Google Scholar 

  5. C.G. Levi: Emerging materials and processes for thermal barrier systems. Curr. Opin. Solid State Mater. Sci. 8, 77–91 (2004).

    Article  CAS  Google Scholar 

  6. M.H. Sullivan and D.R. Mumm: Transient stage oxidation of MCrAlY bond coat alloys in high temperature, high water vapor content environments. Surf. Coat. Technol. 258, 963–972 (2014).

    Article  CAS  Google Scholar 

  7. K. Yan, H.B. Guo, and S.K. Gong: High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres. Corros. Sci. 75, 337–344 (2013).

    Article  CAS  Google Scholar 

  8. P.Y. Hou: Impurity effects on alumina scale growth. J. Am. Ceram. Soc. 86, 660–668 (2003).

    Article  CAS  Google Scholar 

  9. B.A. Pint, M. Treska, and L.W. Hobbs: The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl. Oxid. Met. 47, 1–20 (1997).

    Article  CAS  Google Scholar 

  10. N.P. Padture: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002).

    Article  CAS  Google Scholar 

  11. B.W. Veal, A.P. Paulikas, and P.Y. Hou: Tensile stress and creep in thermally grown oxide. Nat. Mater. 5, 349–351 (2006).

    Article  CAS  Google Scholar 

  12. T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W.J. Quadakkers: Effect of test atmosphere composition on high-temperature oxidation behaviour of CoNiCrAlY coatings produced from conventional and ODS powders. Mater. High Temp. 1–3, 97–107 (2018).

    Article  Google Scholar 

  13. Y. Xiong, M. Li, and S. Li: Interdiffusion behaviors of interface between thermal barrier coating and Ni superalloy at high temperatures. J. Mater. Sci. Eng. 7, 63–69 (2007).

    Google Scholar 

  14. K.M. Davis and M. Tomozawa: Water diffusion into silica glass: Structural changes in silica glass and their effect on water solubility and diffusivity. J. Non-Cryst. Solids 185, 203–220 (1995).

    Article  CAS  Google Scholar 

  15. P. Song, X. He, X. Xiong, H. Ma, Q. Song, J. Lü, and J. Lu: Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature. Mater. Res. Express 5, 036514 (2018).

    Article  Google Scholar 

  16. A.H. Heuer, T. Nakagawa, M.Z. Azar, D.B. Hovis, J.L. Smialek, B. Gleeson, N.D.M. Hine, H. Guhl, H-S. Lee, P. Tangney, W.M.C. Foulkes, and M.W. Finnis: On the growth of Al2O3 scales. Acta Mater. 61, 6670–6683 (2013).

    Article  CAS  Google Scholar 

  17. A.H. Heuer, D.B. Hovis, J.L. Smialek, and B. Gleeson: Alumina scale formation: A new perspective. J. Am. Ceram. Soc. 94, s146–s153 (2011).

    Article  Google Scholar 

  18. A.H. Heuer: Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? J. Eur. Ceram. Soc. 28, 1495–1507 (2008).

    Article  CAS  Google Scholar 

  19. W. Preis and W. Sitte: Fast grain boundary diffusion and rate-limiting surface exchange reactions in polycrystalline materials. J. Appl. Phys. 97, p093504 (2005).

    Article  Google Scholar 

  20. N. Hussain, A.H. Qureshi, K.A. Shahid, N.A. Chughtai, and F.A. Khalid: High-temperature oxidation behavior of HASTELLOY C-4 in steam. Oxid. Met. 61, 355–364 (2004).

    Article  CAS  Google Scholar 

  21. D.P. Whittle and J. Stringer: Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos. Trans. R. Soc., A 295, 309 (1980).

    CAS  Google Scholar 

  22. B.A. Pint: Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Met. 45, 1–37 (1996).

    Article  CAS  Google Scholar 

  23. D.K. Gupta and D.S. Duvall: A Silicon and Hafnium Modified Plasma Sprayed MCrAlY Coating. Superalloys 1984, M. Gell, ed. (TMS, Warrendale, Pennsylvania, 1984); p. 711.

    Google Scholar 

  24. B. Pint, I. Wright, W. Lee, Y. Zhang, K. Prüβner, and K. Alexander: Substrate and bond coat compositions: Factors affecting alumina scale adhesion. Mater. Sci. Eng., A 245, 201–211 (1998).

    Article  Google Scholar 

  25. D. Li, H. Guo, D. Wang, T. Zhang, S. Gong, and H. Xu: Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 °C. Corros. Sci. 66, 125–135 (2013).

    Article  CAS  Google Scholar 

  26. B.A. Pint, J.A. Haynes, and Y. Zhang: Effect of superalloy substrate and bond coating on TBC lifetime. Surf. Coat. Technol. 205, 1236–1240 (2010).

    Article  CAS  Google Scholar 

  27. H. Guo, D. Li, L. Zheng, S. Gong, and H. Xu: Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200 °C. Corros. Sci. 88, 97–208 (2014).

    Article  Google Scholar 

  28. K. Yan, H. Guo, and S. Gong: High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres. Corros. Sci. 83, 335–342 (2014).

    Article  CAS  Google Scholar 

  29. J. Zang, P. Song, J. Feng, X. Xiong, R. Chen, G. Liu, and J. Lu: Oxidation behaviour of the nickel-based superalloy DZ125 hot-dipped with Al coatings doped by Si. Corros. Sci. 112, 170–179 (2016).

    Article  CAS  Google Scholar 

  30. T. Huang, D. Naumenko, P. Song, J. Lu, and W.J. Quadakkers: Effect of titanium addition on alumina growth mechanism on yttria-containing FeCrAl-base alloy. Oxid. Met. 90, 671–690 (2018).

    Article  CAS  Google Scholar 

  31. A.U. Munawar, U. Schulz, and M. Shahid: Microstructure and lifetime of EB-PVD TBCs with Hf-doped bond coat and Gd-zirconate ceramic top coat on CMSX-4 substrates. Surf. Coat. Technol. 299, 104–112 (2016).

    Article  CAS  Google Scholar 

  32. S. Shang, Y. Wang, B. Gleeson, and Z. Liu: Understanding slow-growing alumina scale mediated by reactive elements: Perspective via local metal-oxygen bonding strength. Scr. Mater. 150, 139–142 (2018).

    Article  CAS  Google Scholar 

  33. D.J. Young, D. Naumenko, E. Wessel, L. Singheiser, and W.J. Quadakkers: Effect of Zr additions on the oxidation kinetics of FeCrAlY alloys in low and high pO2 gases. Metall. Mater. Trans. A 42, 1173–1183 (2011).

    Article  CAS  Google Scholar 

  34. H.A. Al-Abadleh and V.H. Grasslan: FT-IR study of water adsorption on aluminium oxide. Langmuir 19, 341–347 (2003).

    Article  CAS  Google Scholar 

  35. X. Wang, X. Peng, X. Tan, and F. Wang: The reactive element effect of ceria particle dispersion on alumina growth: A model based on microstructural observations. Sci. Rep. 6, 29593 (2016).

    Article  CAS  Google Scholar 

  36. C. Li, P. Song, A. Khan, J. Feng, K. Chen, J. Zang, X. Xiong, J. Lü, and J. Lu: Influence of water vapor on the HfO2 distribution within the oxide layer on CoNiCrAlHf alloys. J. Alloys Compd. 739, 690–699 (2018).

    Article  CAS  Google Scholar 

  37. A.G. Evans, M.Y. He, and J.W. Hutchinson: Mechanics-based scaling laws for the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 249–271 (2001).

    Article  CAS  Google Scholar 

  38. J.P. Angle, P.E.D. Morgan, M.L. Mecartney, and J. Cawley: Water vapor-enhanced diffusion in alumina. J. Am. Ceram. Soc. 96, 3372–3374 (2013).

    Article  CAS  Google Scholar 

  39. S.M. Wiederhorn and L.H. Bolz: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 10, 543–548 (1970).

    Article  Google Scholar 

  40. C.E. Athanasiou: Non-contact femtosecond laser-based methods for investigating glass mechanics at small scales. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 2018; ch. 3.

Download references

Acknowledgments

The authors acknowledge funding from the National Natural Science Foundation of China (Grant No. 51401097), Yunnan Province Science and Technology Major Project (Grant No. 2018ZE009), and Yunnan Province Key Research and Development Program (Grant No. 2018BA067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Song, P., Li, C. et al. Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating. Journal of Materials Research 34, 2653–2663 (2019). https://doi.org/10.1557/jmr.2019.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.51

Navigation