Skip to main content
Log in

Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales

  • Research Summary
  • High-Temperature Protection
  • Published:
JOM Aims and scope Submit manuscript

Abstract

While interfacial sulfuris the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Alalloy+3(H2O)air=Al(OH) 3+3H+ may be the operative mechanism. This proposal was tested on pre-oxidized René N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at −2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Smialek, Moisture Induced Spallation and Interfacial Hydrogen Embrittlement of Al 2 O 3 Scales, NASA Technical Memorandum 214030 (Washington, D.C.: NASA, 2005).

    Google Scholar 

  2. J. L. Smialek, “Adherent Al2O3 Scales Formed on Undoped NiCrAl Alloys”, N.L. Peterson Mem. Symp. Proc. on Oxidation of Metals and Associated Mass Transport. ed. M.A. Dayananda, S.J. Rothman, and W.E. King (Warrendale, PA, TMS, 1987). pp. 297–313.

    Google Scholar 

  3. B.K. Tubbs and J.L. Smialek, “The Effect of Sulfur Removal on Scale Adhesion to PWA 1480”, Corrosion and Particle Erosion of Materials at High Temperature, ed. V. Srinivasan and K. Vedula, (Warrendale, PA: TMS, 1989), pp. 459–487.

    Google Scholar 

  4. J.L. Smialek, “Adherent Scales Produced on Uncoated Superalloys: Desulfurized René 142 and René N5”. (Paper presented at the David L. Douglass Symposium on High Temperature Corrosion during the annual meeting of the Electrochemical Society, Miami Beach, FL, Oct 9–14, 1994), paper No. 535, 833–834.

  5. J.L. Smialek et al, “Effects of Hydrogen Annealing, Sulfur Segregation and Diffusion on the Cyclic Oxidation Resistance of Superalloys: A Review”, Thin Solid Films, 253 (1994), p. 285–292.

    Article  CAS  Google Scholar 

  6. J.L. Smialek, “Toward Optimum Scale and TBC Adhesion on Single Crystal Superalloys”, High Temperature Corrosion and Materials Chemistry, volume 98–9, ed. E.J. Opila et al. (Pennington, NJ: The Electrochemical Society, 1988), pp. 211–220.

    Google Scholar 

  7. J.L. Smialek and B.A. Pint, “Optimizing Scale Adhesion for Single Crystal Superalloys”, Mater. Sci. Forum, 369–372, (2001), pp. 459–646; also NASA TM 2000-210362.

    Article  Google Scholar 

  8. J.L. Smialek and G.N. Morscher, “Delayed Alumina Scale Spallation on Rene N5+Y: Moisture Effects and Acoustic Emission”, Materials Science and Engineering: A 332 (1–2) (2002), pp. 11–24.

    Article  Google Scholar 

  9. J.L. Smialek, “Scale Adhesion, Sulfur Content, and TBC Failure on Single Crystal Superalloys”, Ceramic Engineering and Science Proceedings 23, 4 (2002), pp. 485–495.

    CAS  Google Scholar 

  10. D.R. Sigler, “Adherence Behavior of Oxide Grown in Air and Synthetic Exhaust Gas on Fe−Cr−Al Alloys Containing Strong Sulfide-Forming Elements: Ca, Mg, Y, Ce, La, Ti, Zr”, Oxidation of Metals, 40 (1993), pp. 555–583.

    Article  CAS  Google Scholar 

  11. M.A. Smith, W.E. Frazier, and B.A. Pregger, “Effect of Sulfur on the Cyclic Oxidation Behavior of a Single Crystalline, Nickel-Base Superalloy”, Materials Science and Engineering, A 203 (1995), pp. 388–398.

    Article  Google Scholar 

  12. R. Janakiraman, G.H. Meier, and F.S. Pettit, “The Effect of Water Vapor on the Oxidation of Alloys that Develop Alumina Scales for Protection”, Metall, and Mat. Trans. 30A (1999), pp. 2905–2913; and in Cyclic Oxidation of High Temperature Materials, vol. 27, ed. M. Schütze and W.J. Quadakkers (London: European Federation of Corrosion, IOM, 1999), pp. 38–62.

    Article  CAS  Google Scholar 

  13. M.C. Maris-Sida, G.H. Meier, and F.S. Pettit, “Some Water Vapor Effects during the Oxidation of Alloys that are α-Al2O3 Formers”, Metall. Trans. 34A (2003), pp. 2609–2619.

    CAS  Google Scholar 

  14. K. Onal Hance, “Effects of Water Vapor on the Oxidation Behavior of Alumina and Chromia Superalloys between 700°C and 1000°C” (Ph.D. Thesis, University of Pittsburgh, 2005).

  15. C. Zhou, H. Xu, and S. Gong, “Influence of Water Vapor on the Cyclic-Oxidation Behavior of a Low-Pressure Plasma-Sprayed NiCrAlY Coating”, Oxid. Met., 62 (2004), pp. 195–206.

    Article  CAS  Google Scholar 

  16. V. Sergo, and D.R. Clarke, “Observation of Subcritical Spall Propagation of a Thermal Barrier Coating”, J. Amer. Ceram. Soc., 81 (12) (1998), pp. 142–161.

    Google Scholar 

  17. V. Tolpygo and D.R. Clarke, “Spalling Failure of α-alumina Films Grown by Oxidation; Parts I and II”, Mater. Sci. Eng., A 278 (2000), pp. 142–161.

    Google Scholar 

  18. D. Renusch, H. Eschler, and M. Schutze, “Progress in Life Time Modelling of APS-TBC”, Mat. High Temp., 21 (2004), pp. 65–76.

    CAS  Google Scholar 

  19. H.E. Zschau et al., “Detection of Hydrogen in Hidden and Spalled Layers of Turbine Blade Coatings”, Nuclear Instruments and Methods B, in press (2005).

  20. A.K. Kuruvilla and N.S. Stoloff, “Hydrogen Embrittlement of Ni3Al+B”, Scripta Metall., 19 (1985), pp. 83–88.

    Article  CAS  Google Scholar 

  21. N.S. Stoloff and D.J. Duquette, “Moisture and Hydrogen-Induced Embrittlement of Iron Aluminides”, JOM, 45 (12) (1993), pp. 30–35.

    CAS  Google Scholar 

  22. C.T. Liu, E.H. Lee, and C.G. McKamey, “An Environmental Effect as the Major Cause for Room Temperature Embrittlement in FeAl”, Scripta Metall., 23 (1989), pp. 875–880.

    Article  CAS  Google Scholar 

  23. C.T. Liu, “Ni3Al Aluminide Alloys”, Structural Intermetallics, ed. R. Darolia et al. (Warrendale, PA: TMS, 1993), pp. 365–377.

    Google Scholar 

  24. N.S. Stoloff, “Hydrogen and Moisture-Induced Embrittlement of Nickel and Iron Aluminides, “Hydrogen Effects in Materials, ed. A.W. Thompson and N.R. Moody (Warrendale, FA: TMS, 1996), pp. 523–537.

    Google Scholar 

  25. C.T. Liu, et al, “Ordered Intermetallic Alloys: An Assessment”, Intermetallics, 5 (1997), pp. 579–596.

    Article  CAS  Google Scholar 

  26. J. Gayda, R.L. Dreshfield, and T.P. Gabb, “The Effect of Porosity and γ/γ′ Eutectic Content on the Fatigue Bejavior of Hydrogen Charged PWA 1480”, Scripta Met. et Mat. 25 (1991), pp. 2589–2594.

    Article  CAS  Google Scholar 

  27. J. Gayda, T.P. Gabb, and R.L. Dreshfield, “The Effect of Hydrogen on the Low Cycle Fatigue Behavior of a Single Crystal Superalloy,” Hydrogen Effects on Material Behavior ed. N.R. Moody and A.W. Thompson (Warrendale, PA: TMS, 1990), pp. 591–601.

    Google Scholar 

  28. A.R. Troiano, “The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals”. 34th Edward De Mille Campbell Memorial Lecture”, ASM Transactions, 52 (1960), pp. 54–80.

    Google Scholar 

  29. R.P. Wei and M. Gao, “Hydrogen Embrittlement and Environmentally Assisted Crack Growth”, Hydrogen Effects on Material Behavior, ed. N.R. Moody and A.W. Thompson, (Warrendale, PA: TMS, 1990), pp. 789–816.

    Google Scholar 

  30. R.H. Jones, “Hydrogen and Impurity-Induced Intergranular Crack Growth”, Hydrogen Effects on Material Behavior, ed. N.R. Moody and A.W. Thompson (Warrendale, PA: TMS, 1990), pp. 817–843.

    Google Scholar 

  31. J.L. Smialek, “Effect of Moisture on Secondary Spallation of Alumina Scales on Y-doped René N5” (Paper presented at the 2002 TMS Annual Meeting, Water Vapor Effects on the Oxidation of High Temperature Materials Symposium, Seattle, WA, 18–22 February 2002).

  32. J.L. Smialek, “Desk Top TBC Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales” (Paper presented at the 2005 TMS Annual Meeting. Superalloys and Coatings for High Temperature Applications Symposium, San Francisco, CA, 13–17 February 2005).

  33. J.L. Smialek, “Oxide Morphology and Spalling Model for NiAl”, Metall. Trans. 9A (1978), p. 308.

    Google Scholar 

  34. S.M. Weiderhorn, “Moisture Assisted Crack Growth in Ceramics”, Intl. J. Fract. Mech., 4 (1968), pp. 171–177.

    Google Scholar 

  35. D.M. Kotchick and R.E. Tressler, “Surface Damage and Environmental Effects on the Strain-Rate Sensitivity of the Strength of Sapphire and Silicon Carbide Filaments”, J. Mat. Sci. 10 (1975), pp. 608–612.

    Article  Google Scholar 

  36. J.E. Ritter and J.N. Humenik, “Static and Dynamic Fatigue of Polycrystalline Alumina”, J. Mat. Sci., 14 (1979), pp. 626–632.

    Article  CAS  Google Scholar 

  37. M. Reece and F. Gulu, “Indentation Fatigue of High Purity Alumina in Fluid Environments”, J. Amer. Ceram. Soc., 74 (1991), pp. 148–154.

    Article  CAS  Google Scholar 

  38. M. Nagabhooshanam and V.R. Dunke, “Chemiomechanical Effects on Crack Propagation: Polycrystalline α-Al2O3”, J. Mat. Sci., 27 (1992), pp. 2377–2382.

    Article  CAS  Google Scholar 

  39. S.M. Barinov et al., “Influence of Environment on Delayed Failure of Alumina Ceramics”, J. Eur. Ceram. Soc., 18 (1998), pp. 257–263.

    Article  Google Scholar 

  40. M.E. Ebrahimi, J. Chevalier, and G. Fantozzi, “Slow Crack Growth Behavior in Alumina Ceramics”, J. Mater. Res., 15 (2000), pp. 142–147.

    Article  CAS  Google Scholar 

  41. S.J. Cho et al: “Influence of Humidity on the Flexural Strength of Alumina”, J. Eur. Ceram. Soc., 20 (2000), pp. 761–764.

    Article  CAS  Google Scholar 

  42. J.J. Kruzic, R.M. Cannon, and R.O. Ritchie, “Effects of Moisture on Grain-Boundary Strength, Fracture, and Fatigue Properties of Alumina”, J. Am. Ceram. Soc., 88 (2005), pp. 2236–2245.

    Article  CAS  Google Scholar 

  43. Z.Y. Deng et al., “Modification of Al Particle Surfaces by γ-Al2O3 and its Effect on the Corrosion Behavior of Al”, J. Am. Ceram. Soc. 88 (2005), pp. 977–979.

    Article  CAS  Google Scholar 

  44. Z.Y. Deng et al. “Temperature Effect on Hydrogen Generation by the Reaction of γ-Al2O3-Modified Al Powder with Distilled Water”, J. Am. Ceram. Soc., 88 (2005), pp. 2975–2977.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smialek, J.L. Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales. JOM 58, 29–35 (2006). https://doi.org/10.1007/s11837-006-0064-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0064-2

Keywords

Navigation