Skip to main content
Log in

Dynamical study of a time fractional nonlinear Schrödinger model in optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, the optical soliton solutions of the time-fractional nonlinear Schrödinger (NLS) model have been presented. For this purpose, we use the generalized exponential rational function method (GERFM). The NLS model plays a significant role in illustrating the specific explosion of short pulses in optical fibres. In addition, it has applications in a telecommunication system. Trigonometric solutions like dark, bright, kink, and anti-kink type optical soliton solutions get using the proposed method. For physical significance, 2D, 3D, and contour-type graphs draw with the help of Mathematica for different parameters. We conclude that the computational approach is efficient and widely suitable for finding analytical solutions to complex nonlinear problems appearing in the recent era of nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems, vol. 302. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Ahmad, S., Salman, Ullah, A., et al.: Bright, dark and hybrid multistrip optical soliton solutions of a non-linear Schrödinger equation using modified extended tanh technique with new Riccati solutions. Opt. Quant Electron 55, 236 (2023)

    Google Scholar 

  • Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75(3), 876–882 (2018)

    MathSciNet  MATH  Google Scholar 

  • Ali Faridi, W., Abu Bakar, M., Akgül, A., Abd El-Rahman, M., El Din, S.M.: Exact fractional soliton solutions of thin-film ferroelectric material equation by analytical approaches. Alexandria Eng. J. 78, 483–497 (2023)

    Google Scholar 

  • Ali, A., Seadawy, A.R., Lu, D.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79–88 (2017)

    ADS  Google Scholar 

  • Ali, A., Seadawy, A.R., Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications. Open Phys. 16(1), 219–22 (2018)

    Google Scholar 

  • Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–81 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  • Asjad, M.I., Ullah, N., Rehman, H.U., Gia, T.N.: Novel soliton solutions to the Atangana-Baleanu fractional system of equations for the ISALWs. Open Phys. 19(1), 770–779 (2021)

    Google Scholar 

  • Asjad, M.I., Ullah, N., Rehman, H., Baleanu, D.: Optical solitons for conformable space-time fractional nonlinear model. J. Math. Comput. Sci 27(1), 28 (2022)

    Google Scholar 

  • Atta, D.: Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana–Baleanu fractional operator. J. Appl. Comput. Mech. 8(4), 1358–69 (2022)

    MathSciNet  Google Scholar 

  • Biswas, S., Ghosh, U., Raut, S.: Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method. Chaos, Solitons & Fractals 172, 113520 (2023)

    MathSciNet  Google Scholar 

  • Faridi, W.A., Asjad, M.I., Toseef, M., et al.: Analysis of propagating wave structures of the cold bosonic atoms in a zig-zag optical lattice via comparison with two different analytical techniques. Opt. Quant Electr. 54(12), 773 (2022)

    Google Scholar 

  • Faridi, W.A., Asjad, M.I., Jarad, F.: The fractional wave propagation, dynamical investigation, and sensitive visualization of the continuum isotropic bi-quadratic Heisenberg spin chain process. Results Phys. 43, 106039 (2022)

    Google Scholar 

  • Faridi, W.A., Asjad, M.I., Eldin, S.M.: Exact Fractional Solution by Nucci’s Reduction Approach and New Analytical Propagating Optical Soliton Structures in Fiber-Optics. Fractal Fract. 6(11), 654 (2022)

    Google Scholar 

  • Faridi, W.A., Asjad, M.I., Jarad, F.: Non-linear soliton solutions of perturbed Chen-Lee-Liu model by \(\Phi ^{6}\) model expansion approach. Opt. Quant. Electron 54, 664 (2022)

    Google Scholar 

  • Faridi, W.A., Asghar, U., Asjad, M.I., Zidan, A., Eldin, S.M.: Explicit propagating electrostatic potential waves formation and dynamical assessment of generalized Kadomtsev-Petviashvili modified equal width-Burgers model with sensitivity and modulation instability gain spectrum visualization. Results Phys. 44, 106167 (2023)

    Google Scholar 

  • Faridi, W.A., Asjad, M.I., Jhangeer, A., et al.: The weakly non-linear waves propagation for Kelvin-Helmholtz instability in the magnetohydrodynamics flow impelled by fractional theory. Opt. Quant. Electron 55, 172 (2023)

    Google Scholar 

  • Faridi, W.A., Bakar, M.A., Myrzakulova, Z., Myrzakulov, R., Akgül, A., El Din, S.M.: The formation of solitary wave solutions and their propagation for Kuralay equation. Results Phys. 52, 106774 (2023)

    Google Scholar 

  • Houwe, A., Abbagari, S., Nisar, K.S., Inc, M., Doka, S.Y.: Influence of fractional time order on W-shaped and modulation instability gain in fractional nonlinear Schrödinger equation. Results Phys. 28, 104556 (2021)

    Google Scholar 

  • Jumarie, G.: Modified Riemann-Liouville derivative and fractional taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–76 (2006)

    MathSciNet  MATH  Google Scholar 

  • Khater, A.H., Seadawy, A.R., Helal, M.A.: General soliton solutions of an n-dimensional nonlinear Schrödinger equation. Nuovo Cimento. B 115(11), 1303–1311 (2000b)

    MathSciNet  ADS  Google Scholar 

  • Khater, A.H., Callebaut, D.K., Seadawy, A.R.: General soliton solutions of an n-dimensional complex Ginzburg–Landau equation. Phys. Scripta 62(5), 353 (2000a)

    MathSciNet  ADS  Google Scholar 

  • Khater, M.M., Lu, D., Attia, R.A.: Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. AIP Adv. 9(2), 025003 (2019)

    ADS  Google Scholar 

  • Kumar, R., Verma, R.S.: Dynamics of some new solutions to the coupled DSW equations traveling horizontally on the seabed. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.015

    Article  Google Scholar 

  • Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1–2), 69–74 (2001)

    MathSciNet  MATH  ADS  Google Scholar 

  • Lyu, W., Wang, Z.-A.: Logistic damping effect in chemotaxis models with density-suppressed motility. Adv. Nonlin. Anal. 12(1), 336–55 (2022)

    MathSciNet  MATH  Google Scholar 

  • Ma, H., Mao, X., Deng, A.: Interaction solutions for the (2+ 1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation in incompressible fluid. Commun. Theoret. Phys. (2023). https://doi.org/10.1088/1572-9494/acdfc3

    Article  MATH  Google Scholar 

  • Ma, W., Yong, X., Lü, X.: Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. Wave Motion 103, 102719 (2021)

    MathSciNet  MATH  Google Scholar 

  • Nguepjouo, F.T., Kuetche, V.K., Kofane, T.C.: Soliton interactions between multivalued localized waveguide channels within ferrites. Phys. Rev. E 89(6), 063201 (2014)

    ADS  Google Scholar 

  • Osman, M.S., Zafar, A., Ali, K.K., Razzaq, W.: Novel optical solitons to the perturbed Gerdjikov–Ivanov equation with truncated M-fractional conformable derivative. Optik 222, 165418 (2020)

    ADS  Google Scholar 

  • Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999)

    MATH  Google Scholar 

  • Rady, A.A., Osman, E.S., Khalfallah, M.: The homogeneous balance method and its application to the Benjamin–Bona–Mahoney (BBM) equation. Appl. Math. Comput. 217(4), 1385–1390 (2010)

    MathSciNet  MATH  Google Scholar 

  • Rehman, H.U., Inc, M., Asjad, M.I., Habib, A., Munir, Q.: New soliton solutions for the space-time fractional modified third order Korteweg-de Vries equation. J. Ocean. Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.032

    Article  Google Scholar 

  • Russell, J. Scott: Report on waves. In: 14th meeting of the British Association for the Advancement of Science, vol. 311, no. 390, (1844)

  • Shakeel, M., Bibi, A., Zafar, A., et al.: Solitary wave solutions of Camassa-Holm and Degasperis-Procesi equations with Atangana’s conformable derivative. Comp. Appl. Math. 42, 101 (2023)

    MathSciNet  MATH  Google Scholar 

  • Shakeel, M., Bibi, A., Chou, D., Zafar, A.: Study of optical solitons for Kudryashov’s Quintuple power-law with dual form of nonlinearity using two modified techniques. Optik 273, 170364 (2023)

    ADS  Google Scholar 

  • Tang, W.: Soliton dynamics to the Higgs equation and its multi-component generalization. Wave Motion 120, 103144 (2023)

    MathSciNet  Google Scholar 

  • Wang, K.-L.: A novel computational approach to the local fractional lonngren wave equation in fractal media. Math. Sci. (2023). https://doi.org/10.1007/s40096-023-00509-0

    Article  Google Scholar 

  • Yao, S.W., Zafar, A., Urooj, A., Tariq, B., Shakeel, M., Inc, M.: Novel solutions to the coupled KdV equations and the coupled system of variant Boussinesq equations. Results Phys. 45, 106249 (2023)

    Google Scholar 

  • Yepez-Martinez, H., Gómez-Aguilar, J.: Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Compl. Media 31(3), 573–96 (2021)

    MATH  ADS  Google Scholar 

  • Younis, M., Iftikhar, M.: Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct algebraic method. J. Comput. Meth. Sci. Eng. 15(3), 359–365 (2015)

    MathSciNet  MATH  Google Scholar 

  • Younis, M., ur Rehman, H., Rizvi, S.T.R., Mahmood, S.A.: Dark and singular optical solitons perturbation with fractional temporal evolution. Superlatti. Microstr. 104, 525–531 (2017)

    ADS  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., et al.: Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes. Opt. Quant Electron 54, 5 (2022)

    Google Scholar 

  • Zafar, A., Inc, M., Shakeel, M., Mohsin, M.: Analytical study of nonlinear water wave equations for their fractional solution structures. Modern Phys. Lett. B 36(14), 2250071 (2022)

    MathSciNet  ADS  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Rezazadeh, H., Bekir, A.: Analytical study of complex Ginzburg–Landau equation arising in nonlinear optics. J. Nonlin. Opt. Phys. Mater. 32(01), 2350010 (2023)

    ADS  Google Scholar 

  • Zhou, T., Tian, B., Shen, Y., Gao, X.: Bilinear form, bilinear auto-Bäcklund transformation, soliton and half-periodic kink solutions on the non-zero background of a (3+1)-dimensional time-dependent-coefficient Boiti-Leon-Manna-Pempinelli equation. Wave Motion 121, 103180 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-7108).

Author information

Authors and Affiliations

Authors

Contributions

MS Methodology, Writing—Original Draft, Conceptualization, Formal analysis, AB Conceptualization, Methodology, SAQ Methodology, Formal analysis, AMA Review and Editing.

Corresponding authors

Correspondence to Muhammad Shakeel or Salman A. AlQahtani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeel, M., Bibi, A., AlQahtani, S.A. et al. Dynamical study of a time fractional nonlinear Schrödinger model in optical fibers. Opt Quant Electron 55, 1010 (2023). https://doi.org/10.1007/s11082-023-05301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05301-x

Keywords

Navigation