Skip to main content
Log in

High sensitive plasmonic sensor with simple design of the ring and the disk resonators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigated a plasmonic sensor based on silicon dioxide \(\left( {{\text{SiO}}_{2} } \right)\) ring and disk resonator with high sensitivity. The \({\text{SiO}}_{2}\) ring and disk are placed inside the Au layer and the Au layer is on Topas substrate. The proposed structure operates in the wavelength range of 1200 nm to 2000 nm and by tailoring geometrical parameters of the structure, the sensor achieved high optical absorption. In addition, we changed the disk and the ring resonator to the hollow disk and ring resonator which the inside of the ring and disk is surrounded by different refractive index materials (n). We use the finite difference time domain method. We reached high absorption and sensitivity for different materials. When the refractive index of the material is n = 1.7, the maximum sensitivity is achieved. The maximum sensitivity of this proposed sensor is 1122 nm/RIU corresponding to the resonance wavelength of 1806 nm. The figure of merit is 9.83 \({\text{RIU}}^{ - 1}\), while the quality factor of this sensor is 18.53. The variation of sensitivity is from 785 to 1122 nm/RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alipour, A., Farmani, A., Mir, A.: SiO 2–silver metasurface architectures for ultrasensitive and tunable plasmonic biosensing. Plasmonics 15(6), 1935–1942 (2020)

    Article  Google Scholar 

  • Amoosoltani, N., Yasrebi, N., Farmani, A., Zarifkar, A.: A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sens. J. 20(16), 9097–9104 (2020)

    Article  ADS  Google Scholar 

  • Baranzadeh, F., Nozhat, N.: High Performance plasmonic nano-biosensor based on tunable ultra-narrowband perfect absorber utilizing liquid crystal. Plasmonics 16(1), 253–262 (2021)

    Article  Google Scholar 

  • Beiranvand, B., Sobolev, A.S., Sheikhaleh, A.: A proposal for a dual-band tunable plasmonic absorber using concentric-rings resonators and mono-layer graphene. Optik 223, 165587 (2020)

    Article  ADS  Google Scholar 

  • Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66(9), 1038–1043 (2019)

    Article  ADS  Google Scholar 

  • Cao, J., Sun, Y., Kong, Y., Qian, W.: The sensitivity of grating-based SPR sensors with wavelength interrogation. Sensors 19(2), 405 (2019)

    Article  ADS  Google Scholar 

  • Cen, C., et al.: A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors 18(12), 4489 (2018)

    Article  ADS  Google Scholar 

  • Chen, Y., Chen, L., Wen, K., Hu, Y., Lin, W.: Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. Fundam. Appl. 36, 100714 (2019)

    Article  Google Scholar 

  • Della Gaspera, E., Martucci, A.: Sol gel thin films for plasmonic gas sensors. Sensors 15(7), 16910–16928 (2015)

    Article  ADS  Google Scholar 

  • Emaminejad, H., Mir, A., Farmani, A.: Design and Simulation of a novel tunable terahertz biosensor based on metamaterials for simultaneous monitoring of blood and urine components. Plasmonics 16(5), 1537–1548 (2021)

    Article  Google Scholar 

  • Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2), 401–407 (2019)

    Article  ADS  Google Scholar 

  • Gao, N., Lu, K.: An underwater metamaterial for broadband acoustic absorption at low frequency. Appl. Acoust. 169, 107500 (2020)

    Article  Google Scholar 

  • Jia, X., Wang, X., Meng, Q., Zhou, Z.: Tunable multi-band chiral metamaterials based on double-layered asymmetric split ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 81, 37–43 (2016)

    Article  ADS  Google Scholar 

  • Kandil, S.M., Eshrah, I.A., El Babli, I.S., Badawi, A.H.: Plasmon hybridization in split ring nanosandwich for refractive index sensing–numerical investigation. Opt. Express 24(26), 30201–30214 (2016)

    Article  ADS  Google Scholar 

  • Karimkhani, H., Vahed, H.: Hybrid broadband optical modulator based on multi-layer graphene structure and silver nano-ribbons. Opt. Quantum Electron. 52(5), 1–11 (2020a). https://doi.org/10.1007/s11082-020-02354-0

    Article  Google Scholar 

  • Karimkhani, H., Vahed, H.: Hybrid broadband optical modulator based on multi-layer graphene structure and silver nano-ribbons. Opt. Quantum Electron. 52, 1–11 (2020b)

    Article  Google Scholar 

  • Karimkhani, H., Vahed, H.: An optical modulator with ridge-type silicon waveguide based on graphene and MoS2 layers and improved modulation depth. Opt. Quantum Electron. 53(5), 1–10 (2021)

    Article  Google Scholar 

  • Kubo, W., Fujikawa, S.: Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 11(1), 8–15 (2011)

    Article  ADS  Google Scholar 

  • Li, Y., An, B., Jiang, S., Gao, J., Chen, Y., Pan, S.: Plasmonic induced triple-band absorber for sensor application. Opt. Express 23(13), 17607–17612 (2015)

    Article  ADS  Google Scholar 

  • Liu, H., et al.: Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys. Rev. B 76(7), 73101 (2007)

    Article  ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Luo, S., Zhao, J., Zuo, D., Wang, X.: Perfect narrow band absorber for sensing applications. Opt. Express 24(9), 9288–9294 (2016)

    Article  ADS  Google Scholar 

  • Mollah, M.A., Razzak, S.M.A., Paul, A.K., Hasan, M.R.: Microstructure optical fiber based plasmonic refractive index sensor. Sens. Bio-Sens. Res. 24, 100286 (2019)

    Article  Google Scholar 

  • Moradiani, F., Farmani, A., Mozaffari, M.H., Seifouri, M., Abedi, K.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 474, 126178 (2020)

    Article  Google Scholar 

  • Mutlu, M., Akosman, A.E., Serebryannikov, A.E., Ozbay, E.: Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial. Opt. Express 19(15), 14290–14299 (2011)

    Article  ADS  Google Scholar 

  • Rahmanshahi, M., Kourani, S.N., Golmohammadi, S., Baghban, H., Vahed, H.: A tunable perfect THz metamaterial absorber with three absorption peaks based on nonstructured graphene. Plasmonics 16(5), 1665–1676 (2021)

    Article  Google Scholar 

  • Rakhshani, M.R., Tavousi, A., Mansouri-Birjandi, M.A.: Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 57(27), 7798–7804 (2018)

    Article  ADS  Google Scholar 

  • Salim, A., Lim, S.: Review of recent metamaterial microfluidic sensors. Sensors 18(1), 232 (2018)

    Article  ADS  Google Scholar 

  • Shen, H., et al.: Multi-band plasmonic absorber based on hybrid metal-graphene metasurface for refractive index sensing application. Results Phys. 23, 104020 (2021)

    Article  Google Scholar 

  • Shi, X., et al.: Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt. Commun. 427, 326–330 (2018)

    Article  ADS  Google Scholar 

  • Singh, R., Plum, E., Zhang, W., Zheludev, N.I.: Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express 18(13), 13425–13430 (2010)

    Article  ADS  Google Scholar 

  • Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5(9), 523–530 (2011)

    Article  ADS  Google Scholar 

  • Su, W., Ding, Y., Luo, Y., Liu, Y.: A high figure of merit refractive index sensor based on fano resonance in all-dielectric metasurface. Results Phys. 16, 102833 (2020)

    Article  Google Scholar 

  • Svedendahl, M., Chen, S., Dmitriev, A., Kall, M.: Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 9(12), 4428–4433 (2009)

    Article  ADS  Google Scholar 

  • Tang, Y., et al.: Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17(4), 784 (2017)

    Article  ADS  Google Scholar 

  • Tsai, C.-Y., Lu, S.-P., Lin, J.-W., Lee, P.-T.: High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 98(15), 153108 (2011)

    Article  ADS  Google Scholar 

  • Wu, D., et al.: Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res. Lett. 11(1), 1–9 (2016)

    Article  ADS  Google Scholar 

  • Wu, D., Tian, J., Li, L., Yang, R.: Plasmon induced transparency and refractive index sensing in a new type of graphene-based plasmonic waveguide. Opt. Commun. 412, 41–48 (2018)

    Article  ADS  Google Scholar 

  • Xu, Y., et al.: Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7(9), 1801433 (2019)

    Article  Google Scholar 

  • Yang, J., et al.: Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep. 8(1), 1–8 (2018)

    ADS  Google Scholar 

  • Yang, X., Zhu, L., Lu, Y., Yao, J.: Ultrasharp LSPR temperature sensor based on grapefruit fiber filled with a silver nanoshell and liquid. J. Light. Technol. 38(7), 2015–2021 (2019)

    Article  Google Scholar 

  • Yu, C.-C., et al.: Plasmonic nanoparticle-film calipers for rapid and ultrasensitive dimensional and refractometric detection. Analyst 139(20), 5103–5111 (2014)

    Article  ADS  Google Scholar 

  • Zafar, R., Nawaz, S., Singh, G., d’Alessandro, A., Salim, M.: Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens. J. 18(11), 4372–4377 (2018)

    Article  ADS  Google Scholar 

  • Zhang, Z., et al.: Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18(1), 116 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Vahed.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimkhani, H., Attariabad, A. & Vahed, H. High sensitive plasmonic sensor with simple design of the ring and the disk resonators. Opt Quant Electron 54, 344 (2022). https://doi.org/10.1007/s11082-022-03736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03736-2

Keywords

Navigation