Skip to main content

Advertisement

Log in

A Tunable Perfect THz Metamaterial Absorber with Three Absorption Peaks Based on Nonstructured Graphene

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a graphene-based tunable multi-band terahertz absorber is proposed and numerically investigated. The proposed absorber can achieve perfect absorption within both sharp and ultra-broadband absorption spectra. This wide range of absorption is gathered through a unique combination of periodically cross- and square-shaped dielectrics sandwiched between two graphene sheets; the latter enables it to offer more absorption in comparison with the traditional single-layer graphene structures. The aforementioned top layer is mounted on a gold plate separated by a Topas layer with zero volume loss. Furthermore, in our proposed approach, we investigated the possibility of changing the shapes and sizes of the dielectric layers instead of the geometry of the graphene layers to alleviate the edge effects and manufacturing complications. In numerical simulations, parameters, such as graphene Fermi energy and the dimensions of the proposed dielectric layout, have been optimally tuned to reach perfect absorption. We have verified that the performance of our dielectric layout called fishnet, with two widely investigated dielectric layouts in the literature (namely, cross-shaped and frame-and-square). Our results demonstrate two absorption bands with near-unity absorbance at frequencies of 1.6–2.3 and 4.2–4.9 THz, with absorption efficiency of 98% in 1.96 and 4.62 THz, respectively. Moreover, a broadband absorption in the 7.77–9.78 THz is observed with an absorption efficiency of 99.6% that was attained in 8.44–9.11 THz. Finally, the versatility provided by the tunability of three operation bands of the absorber makes it a great candidate for integration into terahertz optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data and materials of this manuscript are available after publishing.

Code availability

The simulation files are available for reviewers upon request.

References

  1. Arezoomandan S et al (2017) Graphene-based reconfigurable terahertz plasmonics and metamaterials. Carbon 112:177–184

    Article  CAS  Google Scholar 

  2. Landy NI et al (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  PubMed  Google Scholar 

  3. Wang X et al (2019) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO 2 spacer. Chin Phys B 28(4):044201

    Article  CAS  Google Scholar 

  4. Chen X et al (2019) Magnetic properties and reverse magnetization process of anisotropic nanocomposite permanent magnet. J Magn Magn Mater 483:152–157

    Article  CAS  Google Scholar 

  5. Liu Z et al (2019) Truncated titanium/semiconductor cones for wide-band solar absorbers. Nano technology 30(30):305203

    Article  CAS  PubMed  Google Scholar 

  6. Van Huynh T et al (2019) Controlling the absorption strength in bidirectional terahertz metamaterial absorbers with patterned graphene. Comput Mater Sci 166:276–281

    Article  CAS  Google Scholar 

  7. Tang J et al (2018) Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV–vis spectral properties. Spectrochim Acta Part A Mol Biomol Spectrosc 191:513–520

    Article  CAS  Google Scholar 

  8. Wang X et al (2019) Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Opt Mater Express 9(4):1872–1881

    Article  CAS  Google Scholar 

  9. Zhang Q et al (2019) One-dimensional Fe7S8@ C nanorods as anode materials for high-rate and long-life lithium-ion batteries. Appl Surf Sci 473:799–806

    Article  CAS  Google Scholar 

  10. Dorodnyy A et al (2018) Plasmonic photodetectors. IEEE J Sel Top Quantum Electron 24(6):1–13

    Article  Google Scholar 

  11. Guo Y et al (2018) Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin–orbit interaction. IEEE J Sel Top Quantum Electron 24(6):1–7

    Article  Google Scholar 

  12. Peng L et al Metal and graphene hybrid metasurface designed ultra-wideband terahertz absorbers with polarization and incident angle insensitivity. Nanoscale Advances, 2019.

  13. Andryieuski A, Lavrinenko AV, Chigrin DN (2012) Graphene hyperlens for terahertz radiation. Phys Rev B 86(12):121108

    Article  CAS  Google Scholar 

  14. Ding W, Andrews S, Maier S (2007) Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A 75(6):063822

    Article  CAS  Google Scholar 

  15. Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.

  16. Amin M, Farhat M, Bağcı H (2013) An ultra-broadband multilayered graphene absorber. Opt Express 21(24):29938–29948

    Article  PubMed  CAS  Google Scholar 

  17. Zhou Q et al (2018) Controlling enhanced absorption in graphene metamaterial. Opt Commun 413:310–316

    Article  CAS  Google Scholar 

  18. Cai Y et al (2015) Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits. Opt Express 23(25):32318–32328

    Article  CAS  PubMed  Google Scholar 

  19. Khavasi A (2015) Design of ultra-broadband graphene absorber using circuit theory. JOSA B 32(9):1941–1946

    Article  CAS  Google Scholar 

  20. Xing R, Jian S (2018) A dual-band THz absorber based on graphene sheet and ribbons. Opt Laser Technol 100:129–132

    Article  CAS  Google Scholar 

  21. Ke S et al (2015) Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt Express 23(7):8888–8900

    Article  CAS  PubMed  Google Scholar 

  22. Xiao B, Gu M, Xiao S (2017) Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl Opt 56(19):5458–5462

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Tian J, Li L (2018) A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays. IEEE Photonics J 10(2):1–12

    Article  Google Scholar 

  24. Wang F et al (2018) Dual-band tunable perfect metamaterial absorber based on graphene. Appl Opt 57(24):6916–6922

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Q et al (2018) Multi-band terahertz absorber exploiting graphene metamaterial. Opt Mater Express 8(9):2928–2940

    Article  CAS  Google Scholar 

  26. Rahmanzadeh M, Rajabalipanah H, Abdolali A (2018) Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl Opt 57(4):959–968

    Article  CAS  PubMed  Google Scholar 

  27. Gao F et al (2017) Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect. Opt Express 25(9):9579–9586

    Article  CAS  PubMed  Google Scholar 

  28. Xu B-Z et al (2013) A novel structure for tunable terahertz absorber based on graphene. Opt Express 21(20):23803–23811

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Hou Y (2017) Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime. Opt Express 25(16):19185–19194

    Article  CAS  PubMed  Google Scholar 

  30. Yang J et al (2018) Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci Rep 8(1):1–8

    Google Scholar 

  31. Qi L, Liu C, Shah SMA (2019) A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 153:179–188

    Article  CAS  Google Scholar 

  32. Nourbakhsh M, Zareian-Jahromi E, Basiri R (2019) Ultra-wideband terahertz metamaterial absorber based on Snowflake Koch Fractal dielectric loaded graphene. Opt Express 27(23):32958–32969

    Article  CAS  PubMed  Google Scholar 

  33. Nourbakhsh M et al An Ultra-Wideband Terahertz Metamaterial Absorber Utilizing Sinusoidal-Patterned Dielectric Loaded Graphene.

  34. Ye L et al (2019) Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon 148:317–325

    Article  CAS  Google Scholar 

  35. Meng K et al (2019) Tunable broadband terahertz polarizer using graphene-metal hybrid metasurface. Opt Express 27(23):33768–33778

    Article  CAS  PubMed  Google Scholar 

  36. Guo T, Jin B, Argyropoulos C (2019) Hybrid graphene-plasmonic gratings to achieve enhanced nonlinear effects at terahertz frequencies. Phys Rev Appl 11(2):024050

    Article  CAS  Google Scholar 

  37. Cheng R et al (2020) Tunable graphene-based terahertz absorber via an external magnetic field. Opt Mater Express 10(2):501–512

    Article  CAS  Google Scholar 

  38. Wang T et al (2020) Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial. Opt Mater Express 10(2):369–386

    Article  CAS  Google Scholar 

  39. Su W, Chen X, Geng Z (2019) Dynamically tunable dual-frequency terahertz absorber based on graphene rings. IEEE Photonics J 11(6):1–8

    Article  Google Scholar 

  40. Qi Y et al (2019) Tunable plasmonic absorber in THz-band range based on graphene “arrow” shaped metamaterial. Results Phys 15:102777

    Article  Google Scholar 

  41. Li J-S, Sun J-Z (2019) Umbrella-shaped graphene/Si for multi-band tunable terahertz absorber. Appl Phys B 125(9):183

    Article  CAS  Google Scholar 

  42. Liu Z, Guo L, Zhang Q (2019) A simple and efficient method for designing broadband terahertz absorber based on singular graphene metasurface. Nanomaterials 9(10):1351

    Article  CAS  PubMed Central  Google Scholar 

  43. Cen C et al (2019) Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results in Physics 14:102463

    Article  Google Scholar 

  44. Yi Z et al (2019) Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Phys 14:102367

    Article  Google Scholar 

  45. Jin X et al (2019) Coherent perfect absorber with independently tunable frequency based on multilayer graphene. Opt Commun 446:44–50

    Article  CAS  Google Scholar 

  46. He J, Zhang Y (2017) Metasurfaces in terahertz waveband. J Phys D Appl Phys 50(46):464004

    Article  CAS  Google Scholar 

  47. Cui Y et al (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8(4):495–520

    Article  CAS  Google Scholar 

  48. Zhao X et al (2016) Nonlinear terahertz metamaterial perfect absorbers using GaAs. Photonics Res 4(3):A16–A21

    Article  CAS  Google Scholar 

  49. Jena R et al (2010) Viscosity of COC polymer (TOPAS) near the glass transition temperature: experimental and modeling. Polym Testing 29(8):933–938

    Article  CAS  Google Scholar 

  50. Ye L et al (2018) Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces. Nanomaterials 8(8):562

    Article  PubMed Central  CAS  Google Scholar 

  51. Zalkovskij M et al (2012) Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Appl Phys Lett 100(3):031901

    Article  CAS  Google Scholar 

  52. Ramachari D et al (2019) High-refractive index, low-loss oxyfluorosilicate glasses for sub-THz and millimeter wave applications. J Appl Phys 125(15):151609

    Article  CAS  Google Scholar 

  53. Rahmanshahi M et al Infrared photodetectors based on graphene metal nano clusters. Photonics and Nanostruct-Fund and App, 2018. 31: p. 173–179.

  54. Sensale-Rodriguez B et al (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780

    Article  PubMed  CAS  Google Scholar 

  55. Sensale-Rodriguez B et al (2011) Unique prospects for graphene-based terahertz modulators. Appl Phys Lett 99(11):113104

    Article  CAS  Google Scholar 

  56. Ju L et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630

    Article  CAS  PubMed  Google Scholar 

  57. Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574

    Article  CAS  PubMed  Google Scholar 

  58. Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics Nat photonics 6(11):749

    Article  CAS  Google Scholar 

  59. Huang X et al (2019) Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt Express 27(18):25902–25911

    Article  CAS  PubMed  Google Scholar 

  60. Cen C et al (2020) A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Phys E 117:113840

    Article  CAS  Google Scholar 

  61. Hu N et al (2018) Dual broadband absorber based on graphene metamaterial in the terahertz range. Opt Mater Express 8(12):3899–3909

    Article  CAS  Google Scholar 

  62. Yi Z et al (2019) Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance. Res Phys 13:102149

    Article  Google Scholar 

Download references

Funding

This article has no funding. The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors have the same contribution percentages in this manuscript. M. Rahmanshahi and S. Noori Kourani have performed the simulations, S. Golmohammadi, H. Baghban, and H. Vahed have contributed in discussions and writing the materials. All co-authors have seen and agree with the contents of the manuscript and they certify that the submission is original work and is not under review at any other publication.

Corresponding author

Correspondence to Mahdi Rahmanshahi.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmanshahi, M., Noori Kourani, S., Golmohammadi, S. et al. A Tunable Perfect THz Metamaterial Absorber with Three Absorption Peaks Based on Nonstructured Graphene. Plasmonics 16, 1665–1676 (2021). https://doi.org/10.1007/s11468-021-01432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01432-7

Keywords

Navigation