Skip to main content
Log in

On the peakon solutions of some stochastic nonlinear evolution equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, stochastic Fornberg–Whitham and a stochastic Camassa–Holm (CH) type equations are studied. A Galilean transformation which previously used for a stochastic KdV equation is employed to transform the equations into their deterministic counterparts. Then \((1/G')\)-expansion method is used to obtain analytical solutions. 2D, 3D, and contour graphs representing the peakon solutions have been plotted by assigning special values to the constants in the solutions via computer software. In addition, by giving different random values to the external noise, the effect of the noise on the wave-forms has been exhibited. The obtained results have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alaloush, M., Taskesen, H.: Conservation laws for a model with both cubic and quadratic nonlinearity. Fundam. J. Math. Appl. 2(2), 180–183 (2019)

    Google Scholar 

  • Albeverio, S., Brzeźniak, Z., Daletskii, A.: Stochastic Camassa-Holm equation with convection type noise. J. Differ. Equ. 276, 404–432 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Rational Mech. Anal. 183(2), 215–239 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, A., Li, J., Deng, X., Huang, W.: Travelling wave solutions of the Fornberg-Whitham equation. Appl. Math. Comput. 215(8), 3068–3075 (2009)

    MathSciNet  MATH  Google Scholar 

  • Chen, Y., Gao, H.: Well-posedness and large deviations of the stochastic modified Camassa-Holm equation. Potent. Anal. 45(2), 331–354 (2016)

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Gao, H., Guo, B.: Well-posedness for stochastic Camassa-Holm equation. J. Differ. Equ. 253(8), 2353–2379 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Constantin, A.: On the Cauchy problem for the periodic Camassa-Holm equation. J. Differ. Equ. 141(2), 218–235 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Constantin, A.: On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal. 155(2), 352–363 (1998)

    Article  MathSciNet  Google Scholar 

  • Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52(8), 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  • Crisan, D., Holm, D.D.: Wave breaking for the Stochastic Camassa-Holm equation. Phys. D Nonlinear Phenom. 138–143(8), 376–377 (2018)

    MathSciNet  MATH  Google Scholar 

  • Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127(1–4), 193–207 (1998)

    Article  MathSciNet  Google Scholar 

  • Duran, S.: Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti-Leon-Pempinelli system via (G/G, 1/G)-expansion method. Opt. Quantum Electron. 53(6), 1–12 (2021)

    Article  Google Scholar 

  • Duran, S., Karabulut, B.: Nematicons in liquid crystals with Kerr Law by sub-equation method. Alexandria Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.06.077

  • Durur, H.: Different types analytic solutions of the (1 + 1)-dimensional resonant nonlinear Schrödinger’s equation using (G/G)-expansion method. Modern Phys. Lett. B 34(3), 21–23 (2020)

  • Durur, H., Yokuş, A.: Discussions on diffraction and the dispersion for traveling wave solutions of the (2+1)-dimensional paraxial wave equation. Math. Sci. (1) 1–11 (2021)

  • Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. A 289(1361), 373–404 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  • Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D Nonlinear Phenom. 4(1), 47–66 (1981)

    Article  ADS  Google Scholar 

  • Haziot, S.V.: Wave breaking for the Fornberg-Whitham equation. J. Differ. Equ. 263(12), 8178–8185 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • He, B., Meng, Q., Li, S.: Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation. Appl. Math. Comput. 217(5), 1976–1982 (2010)

    MathSciNet  MATH  Google Scholar 

  • Holden, H., Raynaud, X.: Global conservative solutions of the Camassa-Holm equation—a lagrangian point of view. Communi. Partial Differ. Equ. 32(10), 1511–1549 (2007)

    Article  MathSciNet  Google Scholar 

  • Hörmann, G., Okamoto, H.: Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation. Disc. Contin. Dyn. Syst. Ser. A 39(8), 4455–4469 (2019)

    Article  MathSciNet  Google Scholar 

  • Inc, M., Rezazadeh, H., Vahidi, J., Eslami, M., Akinlar, M.A., Ali, M.N., Chu, Y.M.: New solitary wave solutions for the conformable klein-gordon equation with quantic nonlinearity. AIMS Math. 5(6), 6972–6984 (2020)

    Article  MathSciNet  Google Scholar 

  • Lenells, J.: Traveling wave solutions of the Camassa-Holm equation. J. Differ. Equ. 217(2), 393–430 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Leta, T.D., Liu, W., Achab, A.E., Rezazadeh, H., Bekir, A.: Dynamical behavior of traveling wave solutions for a (2+1)-dimensional Bogoyavlenskii coupled system. Qual. Theory Dyn. Syst. 20(1), 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  • Liang, J., Li, J., Zhang, Y.: Bifurcations and exact solutions of an asymptotic rotation-Camassa-Holm equation. Nonlinear Dyn. 101(4), 2423–2439 (2020)

    Article  Google Scholar 

  • Lu, J., Hong, X.: Exact traveling wave solutions for generalized Camassa-Holm equation by polynomial expansion methods. Appl. Math. 07(14), 1599–1611 (2016)

    Article  Google Scholar 

  • Lv, G., Wei, J., Zou, G.A.: The dependence on initial data of stochastic Camassa–Holm equation. Appl. Math. Lett. 107, 106472 (2020)

  • Parker, A.: On the Camassa-Holm equation and a direct method of solution I. Bilinear form and solitary waves. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 460(2050):2929–2957 (2004)

  • Rezazadeh, H., Younis, M., Rehman, S.U., Eslami, M., Bilal, M., Younas, U.: New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation. Math. Modell. Nat. Phenom. 16, 38 (2021)

  • Rohde, C., Tang, H.: On a stochastic Camassa-Holm type equation With higher order nonlinearities. https://arxiv.org/abs/2001.05754 (2020)

  • Roshid, H.O., Noor, F.M., Shekha Khatun, N.M., Baskonus, H.M., Belgacem, F.B.M.: Breather, multi-shock waves and localized excitation structure solutions to the extended BKP–Boussinesq equation. Commun. Nonlinear Sci. Numer. Simul. 101, 105867 (2021)

  • Sakar, M.G., Erdogan, F.: The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Appl. Math. Modell. 37(20–21), 8876–8885 (2013)

  • Savaissou, N., Gambo, B., Rezazadeh, H., Bekir, A., Doka, S.Y.: Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity. Opt. Quantum Electron. 52(6), 1–16 (2020)

    Article  Google Scholar 

  • Wadati, M., Akutsu, Y.: Stochastic Korteweg-de Vries equation with and without damping. J. Phys. Soc. Japan 53(10), 3342–3350 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Whitham, G.: Variational methods and applications to water waves. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 299(1456), 6–25 (1967)

    ADS  MATH  Google Scholar 

  • Yel, G., Baskonus, H.M., Gao, W.: New dark-bright soliton in the shallow water wave model. AIMS Math. 5(4), 4027–4044 (2020)

    Article  MathSciNet  Google Scholar 

  • Yokuş, A.: Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite difference method. Int. J. Modern Phys. B 32(29), 1850365 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Yokus, A., Kaya, D.: Numerical and exact solutions for time fractional Burgers’ equation. J. Nonlinear Sci. Appl. 10(07), 3419–3428 (2017)

  • Yokus, A., Yavuz, M.: Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation. Disc. Contin. Dyn. Syst. S 14(7), 2591–2606 (2021)

    MathSciNet  Google Scholar 

  • Zhou, J., Tian, L.: A type of bounded traveling wave solutions for the Fornberg-Whitham equation. J. Math. Anal. Appl. 346(1), 255–261 (2008)

    Article  MathSciNet  Google Scholar 

  • Zhou, J., Tian, L.: Solitons, peakons and periodic cusp wave solutions for the Fornberg-Whitham equation. Nonlinear Anal. Real World Appl. 11(1), 356–363 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The second and third authors are supported by the Research Fund of Van Yuzuncu Yil University [grant number FDK-2020-8881].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asıf Yokuş.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokuş, A., Taskesen, H., Alaloush, M. et al. On the peakon solutions of some stochastic nonlinear evolution equations. Opt Quant Electron 53, 586 (2021). https://doi.org/10.1007/s11082-021-03240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03240-z

Keywords

Mathematics Subject Classification

Navigation