Skip to main content
Log in

All-optical dibit-based Feynman gate using reflective semiconductor optical amplifier with frequency encoding scheme

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In recent years, reversible gates have a great impact on optical nanotechnology, quantum and DNA computing. In the optical field, reversible gates like the Fredkin gate, Feynman gate, Toffoli gate, and Peres gate are very demanding due to their low power consumption. In this article, a novel design of Feynman gate using Add/Drop Multiplexer and Reflective Semiconductor Optical Amplifier (RSOA) is proposed. Frequency encoding scheme and dibit-based logic are incorporated in the proposed design. The Frequency encoding technique decreases the probability of bit error in long-range transmission. Due to the high gain and low noise property of RSOA, the proposed design can perform operations like computation and data processing at ultra-high speed with low noise. To verify the operation of the proposed design, we have used MATLAB Simulink (R2018a) software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Dey, P. De, S. Mukhopadhyay, An all-optical implementation of Fredkin gate using kerr effect. Optoelectron. Lett. 15(4), 317 (2019)

    Article  ADS  Google Scholar 

  2. J. Zhu, P. Zhou, X. Su, Z. You, Accurate and fast 3D surface MEA- surement with temporal-spatial binary encoding structured illumination. Opt. Express 24(25), 28549 (2016)

    Article  ADS  Google Scholar 

  3. S. Dey, S. Mukhopadhyay, All-optical integrated square root of Pauli- Z (SRZ) gates using polarization and phase encoding. J. Opt. 48(4), 520 (2019)

    Article  Google Scholar 

  4. M.N. Sarfaraj, S. Mukhopadhyay, All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding. Optoelectron. Lett. 17(12), 746 (2021)

    Article  ADS  Google Scholar 

  5. A. Raja, K. Mukherjee, J. Roy, Analysis of new all optical polarization- encoded dual SOA-based ternary NOT & XOR gate with simulation. Photonic Netw. Commun. 41(3), 242 (2021)

    Article  Google Scholar 

  6. D. Mandal, S. Mandal, M.K. Mandal, S.K. Garai, Alternative approach of developing optical binary adder using reversible Peres gates. Int. J. Opt. (2018). https://doi.org/10.1155/2018/8541371

    Article  Google Scholar 

  7. S. Saha, S. Mukhopadhyay, All optical frequency encoded quaternary memory unit using symmetric configuration of MZI-SOA. Opt. Laser Technol. 131, 106386 (2020)

    Article  Google Scholar 

  8. S. Saha, S. Biswas, S. Mukhopadhyay, An alternative approach for binary to decimal conversion of frequency encoded optical data using MZI-SOA switch. J. Opt. (2021). https://doi.org/10.1007/s12596-021-00786-9

    Article  Google Scholar 

  9. S. Bosu, B. Bhattacharjee, A novel design of frequency encoded multiplexer and demultiplexer systems using reflected semiconductor optical amplifier with simulative verification. J. Opt. 50(3), 361 (2021)

    Article  Google Scholar 

  10. S. Bosu, B. Bhattacharjee, All optical frequency encoded dibit-based parity generator using reflected semiconductor optical amplifier with simulative verification. FU Electron. Energy 35(1), 29 (2022)

    Google Scholar 

  11. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  12. S.K. Garai, A novel method of developing all optical frequency encoded Fredkin gates. Opt. Commun. 313, 441 (2014)

    Article  ADS  Google Scholar 

  13. S.F. Naz, S. Ahmed, S. Sharma, F. Ahmad, D. Ajitha, Fredkin gate based energy efficient reversible D flip flop design in quantum dot cellular automata. Mater. Today Proc. 46, 5248–5255 (2021)

    Article  Google Scholar 

  14. N. Ghazali, M. Wahid, N.A. Hambali, N. Juhari, M. Shahimin, Characterization of all-optical Feynman and Fredkin gates utilizing optimized SOANOLM. AIP Conf. Proc. 2045, 020079 (2018)

    Article  Google Scholar 

  15. S. Kumar, S.K. Raghuwanshi, Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach-Zehnder interferometers. Appl. Opt. 55(21), 5693 (2016)

    Article  ADS  Google Scholar 

  16. K. Mukherjee, K. Maji, A. Raja, All-optical feynman gate using reflective semiconductor optical amplifiers and binary to gray code converter. Adv. Appl. Math. Sci. 19(9), 919 (2019)

    Google Scholar 

  17. G. K. Maity, S. P. Maity, J. N. Roy, ‘TOAD-based Feynman and Toffoli gate’, In: 2012 Second International conference on advanced computing & communication technologies, pp. 343–349 (2012)

  18. B. Ghosh, S. Hazra, N. Haldar, D. Roy, S.N. Patra, J. Swarnakar, P.P. Sarkar, S. Mukhopadhyay, A novel approach to realize of all optical frequency encoded dibit based XOR and XNOR logic gates using optical switches with simulated verification. Opt. Spectrosc. 124(3), 337 (2018)

    Article  ADS  Google Scholar 

  19. P.P. Sarkar, B. Ghosh, S.N. Patra, Simulative study of all optical fre- quency encoded dibit based universal nand and nor logic gates using a reflective semiconductor optical amplifier and an add/drop multiplexer. J. Opt. Technol. 83(4), 257 (2016)

    Article  Google Scholar 

  20. B. Ghosh, S. Biswas, S. Mukhopadhyay, A novel method of all- optical wavelength encoded logic and inhibitor operations with dibit representation technique. Optik 126(4), 483 (2015)

    Article  ADS  Google Scholar 

  21. A. Ghosh, A. Jain, N. Singh, S. K. Sarkar, ‘Single electron threshold logic based Feynman gate implementation’, In: 2016 Second international conference on research in computational intelligence and communication networks (ICRCICN), pp. 266–268 (2016)

  22. P.K. Biswas, A.N. Bahar, M.A. Habib, M. Abdullah-Al-Shafi, Efficient design of Feynman and Toffoli gate in quantum dot cellular automata (QCA) with energy dissipation analysis. Nanosci. Nanotechnol. 7(2), 27 (2017)

    Google Scholar 

  23. M. H. Khan, ‘Single-electron transistor based implementation of NOT, Feynman, and Toffoli gates, in: 2015 IEEE International symposium on multiple-valued logic, pp. 66–71 (2015)

  24. K. Bordoloi, T. Theresal, S. Prince, ‘Design of all optical reversible logic gates’, in: 2014 International conference on communication and signal processing, pp. 1583–1588 (2014)

  25. R.P. Feynman, Quantum mechanical computers. Opt. News 11(2), 11 (1985)

    Article  Google Scholar 

  26. S. Bosu, B. Bhattacharjee, ‘All-optical frequency encoded dibit-based half adder using reflective semiconductor optical amplifier with simulative verification’, in 2021 Devices for integrated circuit (DevIC), pp. 388–392 (2021)

  27. S. Bosu, B. Bhattacharjee, ‘A design of frequency encoded dibit-based comparator using reflective semiconductor optical amplifier with simulative verification’, in 2021 Devices for integrated circuit (DevIC), pp. 175–179 (2021)

  28. K. Mukherjee, K. Majhi, A. Raja, A novel approach to all-optical universal soliton logic gate NAND utilizing reflective semiconductor optical amplifiers. J. Opt. 49(4), 516 (2020)

    Article  Google Scholar 

  29. K. Mukherjee, K. Maji, A. Raja, M.K. Mandal, All-optical soliton based universal logic NOR utilizing a single reflective semiconductor optical amplifier (RSOA). Photonic Netw. Commun. (2021). https://doi.org/10.2298/FUEE2201029B

    Article  Google Scholar 

  30. B. Ghosh, S. Hazra, P.P. Sarkar, Simulative study of all-optical frequency encoded dibit-based controlled multiplexer and de-multiplexer using optical switches. J. Opt. 48(3), 365 (2019)

    Article  Google Scholar 

  31. S. Mukhopadhyay, Binary optical data subtraction by using a ternary dibit representation technique in optical arithmetic problems. Appl. Opt. 31(23), 4622 (1992)

    Article  ADS  Google Scholar 

  32. S. Bosu, B. Bhattacharjee, ‘All-optical frequency encoded dibit-based half subtractor using reflective semiconductor optical amplifier with simulative verification’, In Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences, ed. by M. Dua, A. K. Jain, A. Yadav, N. K, P. Siarry (Springer, Singapore, 2022), pp. 29–38

  33. K. Maji, K. Mukherjee, A. Raja, J.N. Roy, Numerical simulations of an all-optical parity generator and checker utilizing a reflective semiconductor optical amplifier at 200 Gbps. J. Comput. Electron. 19(2), 800 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Physics, Bankura University, Bankura, Pin-722155, West Bengal, India for support to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Bosu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosu, S., Bhattacharjee, B. All-optical dibit-based Feynman gate using reflective semiconductor optical amplifier with frequency encoding scheme. J Opt 52, 33–41 (2023). https://doi.org/10.1007/s12596-022-00875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00875-3

Keywords

Navigation