Skip to main content
Log in

DNA implementation for optical waveguide as a switchable transmission line and memristor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, an optical waveguide has been developed based on the (Deoxyribonucleic acid) DNA core as a multi-slab structure by switching characteristic at 300 THz. We show that how the DNA with various electrical characteristics can be considered as a reconfigurable material which is placed between two optical metal layers. Therefore, we can control the current and voltage density values based on the divergence of the DNA types as an optical switch. Moreover, we can select the Au and Ag for the metal coat. In this research, we demonstrate that the Ag/DNA/Ag and Au/DNA/Ag have better performance in switching qualification than Au/DNA/Au model as a conventional structure. This DNA core waveguide has a switchable feature which cannot be found at any conventional plasmonic waveguide. The FDTD time domain is used for simulating the waveguide and the current density is considered as an ON/OFF switch. We carry out parametric studies for the physical dimensions of the waveguide and illustrate that how we can improve the switching characteristic. Moreover, we have checked the coupling effect between the transmission lines and defined the figure of merit for switching quality. This structure can be considered as an optical memristor and optical “YES” gate which couldn’t be obtained by other graphene waveguide while it became feasible based on DNA switching feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdalla, S., Al-Marzouki, F.M., Al-Ghamdi, A.A.: Field effect transistor using carbon nanotubes and DNA as electrical gate. Braz. J. Phys. 47, 34–41 (2017)

    Article  ADS  Google Scholar 

  • Balci, O., Polat, E.O., Kakenov, N., Kocabas, C.: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015)

    Article  ADS  Google Scholar 

  • Cai, L., Tabata, H., Kawai, T.: Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77, 3105–3106 (2000)

    Article  ADS  Google Scholar 

  • Chu, H., Chiu, S.-C., Sung, C.-F., Tseng, W., Chang, Y.-C., Jian, W.-B., Chen, Y.-C.: Programmable redox state of the nickel ion chain in DNA. Nano Lett. 14, 1026–1031 (2014)

    Article  ADS  Google Scholar 

  • Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Quadratic phase matching in nonlinear plasmonic nanoscale waveguides. Opt. Express 17, 20063–20068 (2009)

    Article  ADS  Google Scholar 

  • Degiron, A., Smith, D.R.: Nonlinear long-range plasmonic waveguides. Phys. Rev. A 82(3), 033812 (2010)

    Article  ADS  Google Scholar 

  • Des Francs, G.C., Grandidier, J., Massenot, S., Bouhelier, A., Weeber, J.-C., Dereux, A.: Integrated plasmonic waveguides: a mode solver based on density of states formulation. Phys. Rev. B 80, 115419 (2009)

    Article  ADS  Google Scholar 

  • Diedrich, D., Rottler, A., Heitmann, D., Mendach, S.: Metal–dielectric metamaterials for transformation-optics and gradient-index devices in the visible regime. New J. Phys. 14(5), 053042 (2012)

    Article  ADS  Google Scholar 

  • Emboras, A., Goykhman, I., Desiatov, B., Mazurski, N., Stern, L., Shappir, J., Levy, U.: Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 13(12), 6151–6155 (2013)

    Article  ADS  Google Scholar 

  • Gao, X., Ning, L., Liu, Z., Li, M., Ye, P., Chen, P., Li, M.: “Optical filter effect of the metal–dielectric–metal waveguide with stub structure. Optik-Int. J. Light Electron Opt. 127, 2444–2447 (2016)

    Article  Google Scholar 

  • Hadad, Y., Steinberg, B.Z.: Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett. 105, 233904 (2010)

    Article  ADS  Google Scholar 

  • Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., Hafner, C., Leuthold, J.: The plasmonic memristor: a latching optical switch. Optica 1(4), 198–202 (2014)

    Article  Google Scholar 

  • Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)

    Article  ADS  Google Scholar 

  • Hosseininejad, S.E., Komjani, N.: Comparative analysis of graphene-integrated slab waveguides for terahertz plasmonics. Photon. Nanostructures-Fundam. Appl. 20, 59–67 (2016)

    Article  ADS  Google Scholar 

  • Hung, Y., Hsu, W.-T., Lin, T.-Y., Fruk, L.: Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl. Phys. Lett. 99, 277 (2011)

    Google Scholar 

  • Jahangiri, P., Zarrabi, F.B., Naser-Moghadasi, M., Afsaneh, S.A., Heydari, S.: Hollow plasmonic high Q-factor absorber for bio-sensing in mid-infrared application. Opt. Commun. 394, 80–85 (2017)

    Article  ADS  Google Scholar 

  • Kaur, S., Kaur, S., Kaur, M., Kumar, G. Numerical analysis of terahertz surface plasmon polaritons propagating in a parallel plate configuration. In: Journal of Physics: Conference Series, vol. 759, no. 1, p. 012049. IOP Publishing (2016)

  • Leal‐Sevillano, C.A., Ruiz‐Cruz, J.A., Montejo‐Garai, J.R., Rebollar, J.M. Rigorous analysis of the parallel plate waveguide: from the transverse electromagnetic mode to the surface plasmon polariton. Radio Sci. 47(6), 1–8 (2012)

  • Liu, J., Mendis, R., Mittleman, D.M.: The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides. Appl. Phys. Lett. 98, 231113 (2011)

    Article  ADS  Google Scholar 

  • Locatelli, A., Town, G.E., Angelis, C.D.: Graphene-based terahertz waveguide modulators. IEEE Trans. Terahertz Sci. Technol. 5, 351–357 (2015)

    Article  ADS  Google Scholar 

  • Ooi, K.J., Chu, H.S., Ang, L.K., Bai, P.: Mid-infrared active graphene nanoribbon plasmonic waveguide devices. JOSA B 30, 3111–3116 (2013)

    Article  ADS  Google Scholar 

  • Park, S., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559), 1503–1506 (2002)

    ADS  Google Scholar 

  • Qin, S., Dong, R., Yan, X., Du, Q.: A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron. 22, 147–153 (2015)

    Article  Google Scholar 

  • Qu, B., Lin, Q., Wan, T., Du, H., Chen, N., Lin, X., Chu, D.: Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen. J. Phys. D-Appl. Phys. 50(31), 315105 (2017)

    Article  ADS  Google Scholar 

  • Sharma, P., Kumar, V.D.: Investigation of multilayer planar hybrid plasmonic waveguide and bends. Electron. Lett. 52, 732–734 (2016)

    Article  Google Scholar 

  • Soltani, M.R.: Corrugated-enhanced second harmonic generation in metal–insulator–metal plasmonic waveguides. Opt. Quant. Electron. 49, 242 (2017)

    Article  Google Scholar 

  • Sun, B., Zhang, X., Zhou, G., Li, P., Zhang, Y., Wang, H., Xia, Y., Zhao, Y.: An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 42, 181–186 (2017)

    Article  Google Scholar 

  • Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)

    Article  Google Scholar 

  • Triberis, G.P., Dimakogianni, M.: DNA in the material world: electrical properties and nano-applications. Recent Pat. Nanotechnol. 3, 135–153 (2009)

    Article  Google Scholar 

  • Xu, G., Cao, M., Liu, C., Sun, J., Pan, T.: Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Opt. Commun. 366, 112–118 (2016)

    Article  ADS  Google Scholar 

  • Yazdanypoor, M., Emami, F.: Optimizing of the novel asymmetric plasmonic waveguide with two identical gratings to increase the SHG efficiency. Opt. Quant. Electron. 48, 483 (2016)

    Article  Google Scholar 

  • Zarrabi, F.B., Naser-Moghadasi, M.: Plasmonic split ring resonator with energy enhancement for the application of bio-sensing and energy harvesting based on the second harmonic generation and multi Fano resonance. J. Alloy. Compd. 706, 568–575 (2017)

    Article  Google Scholar 

  • Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. 32, 3597–3601 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sabbaghi-Nadooshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Sabbaghi-Nadooshan, R. & Tavakoli, M.B. DNA implementation for optical waveguide as a switchable transmission line and memristor. Opt Quant Electron 50, 196 (2018). https://doi.org/10.1007/s11082-018-1462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1462-8

Keywords

Navigation