Skip to main content
Log in

Design and optimization of photonic crystal based eight channel dense wavelength division multiplexing demultiplexer using conjugate radiant neural network

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, two dimensional photonic crystal, based eight-channel demultiplexer is proposed and designed for DWDM applications. The performance parameters of the demultiplexer such as transmission efficiency, channel spacing, spectral line width, Q factor, and crosstalk have been evaluated. The proposed demultiplexer comprises of bus waveguide, drop waveguide and parellogram resonant cavity (PRC). The bus waveguide transmits light to the PRC and exits through respective drop waveguide. The PRC consists of a parellogram resonator with a nano ring cavity that is used for dropping eight specific wavelength for ITU-T G 694.1 standard with 50 GHz channel spacing. The circular ring resonator is placed above the PRC wherein a resonant air hole (Cr) is positioned for desired channel selection. The channel selection is done by altering the radius of the air hole. In addition, a conjugate radiant neural network is implemented for optimizing the radii of resonant air holes to select the required channel wavelength. The proposed device is very compact and it could be considered for implementing the photonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik Int. J. Light Electron Opt. 124(17), 2639–2644 (2013)

    Article  Google Scholar 

  • Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)

    Article  MATH  Google Scholar 

  • Alipour-Banaei, H., Ghorbanzadeh, M., Abdollahzadeh-badelbou, P.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Physica E 75, 77–85 (2015a)

    Article  ADS  Google Scholar 

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17, 259–263 (2015b)

    MATH  Google Scholar 

  • Aoyama, Koh-ichi, Minowa, Jun-ichiro: Optical demultiplexer for a wavelength division multiplexing system. Appl. Opt. 18(8), 1253–1258 (1979)

    Article  ADS  Google Scholar 

  • Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater. 2016, 9850457 (2016)

    Google Scholar 

  • Bayindir, M., Temelkuran, B., Ozbay, E., Bayindir, M., Temelkuran, B., Ozbay, E.: Photonic-crystal-based beam splitters. Appl. Phys. Lett. 3902(2000), 10–13 (2006)

    Google Scholar 

  • Bouamami, S., Naoum, R.: Compact WDM demultiplexer for seven channels in photonic crystal. Optik Int. J. Light Electron Opt. 124(6), 2373–2375 (2013)

    Article  Google Scholar 

  • Brouckaert, J., Bogaerts, W., Dumon, P., Van Thourhout, D., Baets, R.: Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform. J. Lightwave Technol. 25(5), 1269–1275 (2007)

    Article  ADS  Google Scholar 

  • Charalambous, C.: Conjugate gradient algorithm for efficient training of artificial neural networks. IEE Proc. Circuits Devices Syst. 139(3), 301–310 (1992)

    Article  Google Scholar 

  • Chen, Y., Liu, T., Wang, W., Zhu, Q., Bi, W., Sensing, O.F.: Refractive index sensing performance analysis of photonic crystal Mach Zehnder interferometer based on BP neural network optimization. Mod. Phys. Lett. B 29(10), 1–10 (2015)

    Article  Google Scholar 

  • Fornarelli, G., Mescia, L., Prudenzano, F., De Sario, M., Vacca, F.: A neural network model of erbium-doped photonic crystal fibre amplifiers. Opt. Laser Technol. 41(5), 580–585 (2009)

    Article  ADS  Google Scholar 

  • Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Optik Int. J. Light Electron Opt. 125(19), 5833–5836 (2014)

    Article  Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386(6621), 143–149 (1996)

    Article  ADS  Google Scholar 

  • Kaminow, I.P., Iannone, P.P., Stone, J., Stulz, L.W.: FDMA-FSK star network with a tunable optical filter demultiplexer. J. Lightwave Technol. 6(9), 1406–1414 (1988)

    Article  ADS  Google Scholar 

  • Liu, W.: Optimization transmission of photonic crystal coupled cavity and design of demultiplexer for wavelength division multiplexing application. Opt. Eng. 51(8), 084002-1 (2012)

    ADS  Google Scholar 

  • Mahdi, R.H., Fyath, R.S.: Analytical framework to investigate the performance of WDM cascade demultiplexer. Int. J. Opt. Appl. 4(3), 92–100 (2014)

    Google Scholar 

  • Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31(1), 65–70 (2016)

    Article  Google Scholar 

  • Nishi, I., Oguchi, T., Kato, K.: Broad-pass band-width optical filter for multi/demultiplexer using a diffraction gratting and retro reflector prism. Electron. Lett. 21(10), 423–424 (1985)

    Article  Google Scholar 

  • Rawal, S., Sinha, R.K.: Design analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282(19), 3889–3894 (2009)

    Article  ADS  Google Scholar 

  • Robinson, S., Nakkeeran, R.: Coupled mode theory analysis for circular photonic crystal ring resonator-based add-drop filter. Opt. Eng. 51(11), 114001 (2012)

    Article  ADS  Google Scholar 

  • Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photon. Nanostruct. Fundam. Appl. 8(1), 14–22 (2010)

    Article  ADS  Google Scholar 

  • Samanta, S., Banerji, P., Ganguly, P.: Focused ion beam fabrication of SU-8 waveguide structures on oxidized silicon. MRS Adv. 2017, 1–6 (2017)

    Google Scholar 

  • Selvaraja, S., Jaenen, P., Bogaerts, W., Van Thourhout, D., Dumon, P., Baets, R.: Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. Lightwave Technol. 27, 4076–4083 (2009)

    Article  ADS  Google Scholar 

  • Shanthi, K.V., Robinson, S.: Two-dimensional photonic crystal based sensor for pressure sensing. Photon. Sens. 4(3), 248–253 (2014)

    Article  ADS  Google Scholar 

  • Specht, D.F.: A general regression neural network. IEEE Trans. Neutr. Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

  • Tanaka, Y., Upham, J., Nagashima, T., Sugiya, T., Asano, T., Noda, S.: Dynamic control of the Q factor in a photonic crystal nanocavity. Nature 6, 6–9 (2007)

    Article  Google Scholar 

  • Tekeste, M.Y., Yarrison-rice, J.M.: High efficiency photonic crystal based wavelength demultiplexer. Opt. Express 14(17), 7931–7942 (2006)

    Article  ADS  Google Scholar 

  • Tian, Y., Isotalo, T.J., Konttinen, M.P., Li, J., Heiskanen, S., Geng, Z., Maasilta, I.J.: Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography. J. Phys. D Appl. Phys. 50(5), 055302 (2017)

    Article  ADS  Google Scholar 

  • Yu, C., Chang, H.: Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt. Express 12(25), 3341–3352 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

The author Balaji would like acknowledge Dr. N.R. Shanker, Manager, Research and Development, Chase Technologies, Chennai for his support at different times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatachalam Rajarajan Balaji.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, V.R., Murugan, M., Robinson, S. et al. Design and optimization of photonic crystal based eight channel dense wavelength division multiplexing demultiplexer using conjugate radiant neural network. Opt Quant Electron 49, 198 (2017). https://doi.org/10.1007/s11082-017-1038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1038-z

Keywords

Navigation