Skip to main content
Log in

Theoretical and numerical modeling of linear and nonlinear propagation in graphene waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A formulation for the theoretical and numerical modeling of electromagnetic wave propagation in graphene-comprising waveguides is presented, targeting applications in the linear and nonlinear regime. Waveguide eigenmodes are rigorously calculated using the finite-element method (FEM) in the linear regime and are subsequently used to extract nonlinear properties in terms of the nonlinear Schrödinger equation framework. Graphene sheets are naturally represented as sheet/2D media and are seamlessly implemented with interface conditions in the FEM, thus greatly enhancing the computational efficiency. This formulation is used to analyze the nonlinear performance of several graphene-comprising waveguide configurations in the optical band, including silicon-based photonic waveguides, metal-based plasmonic waveguides and glass microfibers. Optimal design choices are identified for each configuration and subtle aspects of the FEM-based modeling, especially important for plasmonic waveguides, are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afshar Vahid, S., Monro, T.M.: A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity. Opt. Express 17(4), 2298–2318 (2009)

    Article  ADS  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  • Bao, Q., Zhang, H., Wang, B., Ni, Z., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5(7), 411–415 (2011)

    Article  ADS  Google Scholar 

  • Bludov, Y.V., Ferreira, A., Peres, N.M.R., Vasilevskiy, M.I.: A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B 27(10), 1341001 (2013). doi:10.1142/S0217979213410014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boardman, A., King, N., Rapoport, Y.: Metamaterials driven by gain and special configurations. In: Proceedings of SPIE, vol. 6581, p. 658108 (2007). doi:10.1117/12.724180

  • Boyd, R.: Nonlinear Optics. Elsevier, London (2008)

    Google Scholar 

  • Butcher, P., Cotter, D. (eds.): The Elements of Nonlinear Optics. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  • Chatzidimitriou, D., Pitilakis, A., Kriezis, E.E.: Rigorous calculation of nonlinear parameters in graphene-comprising waveguides. J. Appl. Phys. 118(2), 023105 (2015). doi:10.1063/1.4926501

    Article  ADS  Google Scholar 

  • Cheng, J.L., Vermeulen, N., Sipe, J.E.: Third order optical nonlinearity of graphene. New J. Phys. 16(5), 053014 (2014). doi:10.1088/1367-2630/16/5/053014

    Article  ADS  Google Scholar 

  • Collin, R.E.: Field Theory of Guided Waves, 2nd edn. Wiley, New Jersey (1990)

    Book  MATH  Google Scholar 

  • Daniel, B.A., Agrawal, G.P.: Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects. J. Opt. Soc. Am. B 27(5), 956–965 (2010)

    Article  ADS  Google Scholar 

  • Falkovsky, L.A.: Optical properties of graphene and IV–VI semiconductors. phys. Usp. 51(9), 887–897 (2008). doi:10.1070/PU2008v051n09ABEH006625

    Article  ADS  Google Scholar 

  • Geim, A., Novoselov, K.: The rise of graphene. Nat. Mater 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  • Gu, T., Petrone, N., McMillan, J.F., van der Zande, A., Yu, M., Lo, G.Q., Kwong, D.L., Hone, J., Wong, C.W.: Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 6(8), 554–559 (2012)

    Article  ADS  Google Scholar 

  • Hanson, G.: Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56(3), 747–757 (2008)

    Article  ADS  Google Scholar 

  • Hendry, E., Hale, P.J., Moger, J., Savchenko, A.K., Mikhailov, S.A.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105(9), 097401 (2010). doi:10.1103/PhysRevLett.105.097401

    Article  ADS  Google Scholar 

  • Jablan, M., Buljan, H., Soljačić, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80(24), 245435 (2009). doi:10.1103/PhysRevB.80.245435

    Article  ADS  Google Scholar 

  • Khurgin, J.B.: Graphene—a rather ordinary nonlinear optical material. Appl. Phys. Lett. 104(16), 161116 (2014). doi:10.1063/1.4873704

    Article  ADS  Google Scholar 

  • Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007)

    Article  ADS  Google Scholar 

  • Leon-Saval, S., Birks, T., Wadsworth, W., Russell, P.S.J., Mason, M.: Supercontinuum generation in submicron fibre waveguides. Opt. Express 12(13), 2864–2869 (2004)

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12(3), 1482-5 (2012)

    Article  ADS  Google Scholar 

  • Midrio, M., Galli, P., Romagnoli, M., Kimerling, L.C., Michel, J.: Graphene-based optical phase modulation of waveguide transverse electric modes. Photonics Res. 2(3), A34–A40 (2014). doi:10.1364/PRJ.2.000A34

    Article  Google Scholar 

  • Mikhailov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys. Condens. Matter 28(38), 384204 (2008). doi:10.1088/0953-8984/20/38/384204

    Article  ADS  Google Scholar 

  • Nikitin, A.Y., Guinea, F., García-Vidal, F.J., Martín-Moreno, L.: Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84(16), 161407 (2011). doi:10.1103/PhysRevB.84.161407

    Article  ADS  Google Scholar 

  • Novoselov, K., Fal’Ko, V., Colombo, L., Gellert, P., Schwab, M., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012)

    Article  ADS  Google Scholar 

  • Onural, L.: Impulse functions over curves and surfaces and their applications to diffraction. J. Math. Anal. Appl. 322(1), 18–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Otsuji, T., Tombet, S.A.B., Satou, A., Fukidome, H., Suemitsu, M., Sano, E., Popov, V., Ryzhii, M., Ryzhii, V.: Graphene-based devices in terahertz science and technology. J. Phys. D Appl. Phys. 45(30), 303001 (2012). doi:10.1088/0022-3727/45/30/303001

    Article  Google Scholar 

  • Pitilakis, A., Kriezis, E.E.: Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. J. Opt. Soc. Am. B 30(7), 1954–1965 (2013)

    Article  ADS  Google Scholar 

  • Pitilakis, A., Chatzidimitriou, D., Kriezis, E.E.: A strict framework for analyzing linear and nonlinear propagation in photonic and terahertz graphene waveguides. In: 17th International Conference on Transparent Optical Networks (ICTON), 2015, Budapest, Hungary, pp. 1–4 (2015)

  • Rapoport, Y.: General method for the derivations of the evolution equations and modeling nonlinear waves in active layered structures with surface and volume nonlinearities. In: Bulletin of Taras Shevchenko National University of Kyiv, Series Physics and Mathematics, vol. 1, pp. 281–288 (2014)

  • Rapoport, Y., Grimalsky, V.: Nonlinear surface 2D plasmons and giant second harmonic generation. In: Proceedings of the International Conference Days on Diffraction (DD 2011), vol. 6094387, pp. 168–173 (2011)

  • Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)

    Google Scholar 

  • Stauber, T., Peres, N., Geim, A.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), 085432 (2008). doi:10.1103/PhysRevB.78.085432

    Article  ADS  Google Scholar 

  • Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., Ferrari, A.C.: Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)

    Article  Google Scholar 

  • Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291-4 (2011)

    Article  ADS  Google Scholar 

  • Volakis, J., Chatterjee, A., Kempel, L.: Finite element method for electromagnetics. IEEE Press, New York (1998)

    Book  MATH  Google Scholar 

  • Wu, Y., Yao, B., Cheng, Y., Rao, Y., Gong, Y., Zhou, X., Wu, B., Chiang, K.S.: Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photonics Technol. Lett. 26(3), 249–252 (2014)

    Article  ADS  Google Scholar 

  • Xia, F., Mueller, T., Lin, Y.M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat Nanotechnol. 4(12), 839–843 (2009)

    Article  ADS  Google Scholar 

  • Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014)

    Article  ADS  Google Scholar 

  • Zhang, H., Virally, S., Bao, Q., Ping, L.K., Massar, S., Godbout, N., Kockaert, P.: Z -scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Alexandros Pitilakis acknowledges the support of the “IKY Fellowships of Excellence for Postgraduate Studies in Greece - Siemens Programme”. This research has been co-financed by the European Union (European Social Fund–ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF): Research Funding Program THALES (Project ANEMOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Pitilakis.

Additional information

This article is part of the Topical Collection on Optical Wave & Waveguide Theory and Numerical Modelling, OWTNM’ 15.

Guest edited by Arti Agrawal, B.M.A. Rahman, Tong Sun, Gregory Wurtz, Anibal Fernandez and James R. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitilakis, A., Chatzidimitriou, D. & Kriezis, E.E. Theoretical and numerical modeling of linear and nonlinear propagation in graphene waveguides. Opt Quant Electron 48, 243 (2016). https://doi.org/10.1007/s11082-016-0510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0510-5

Keywords

Navigation