Skip to main content
Log in

Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced QWIP

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work presents a theoretical analysis of direct transition in strain balanced SiGeSn/GeSn quantum well infrared photodetector. Eigen energies for Г valley conduction band, heavy hole band and light hole band are obtained from the self consistent solution of coupled Schrödinger and Poisson equations by finite difference method. Absorption spectra for direct transition of heavy hole and light hole band to Г valley are calculated after evaluating Eigen energies and wave functions. Significant absorption in infrared region is obtained for heavy hole band–Г valley conduction band transition. A significant shift in absorption peak towards longer wavelengths is observed in presence of electric field considering excitonic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhattacharya, P.: Semiconductor Optoelectronic Devices, 2nd edn. Pearson Education Inc., New Jersey (1994)

    Google Scholar 

  • Chang, G.-E., Chang, S.-W., Chuang, S.-L.: Strain-balanced GezSn1−z-SixGey Sn1−x−y multiple-quantum-well lasers. IEEE JQE 46, 1813–1820 (2010)

    Article  Google Scholar 

  • Chuang, S.L.: Physics of Optoelectronic Devices. Wiley, New York (1995)

    Google Scholar 

  • Crowder, J.G., Smith, S.D., Vass, A., Keddie, J.: Infrared methods for gas detection. Mid infrared semiconductor optoelectronics. Springer Ser. Opt. Sci. 118, 595–613 (2006)

    Article  Google Scholar 

  • D’costa, V.R., Fang, Y., Mathews, J., Roucka, R., Tolle, J., Menéndez, J., Kouvetakis, J.: Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L telecommunication bands. Semicond. Sci. Technol. (2009). doi:10.1088/0268-1242/24/11/115006

  • Das, M.K., Pareek, P.: Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced. In: Proceedings of 15th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2015), ThPd5, pp. 11–12 (postdeadline papers section), 7th–11th September, Taipei (2015)

  • Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  • Daukes Ekin, N.J., Kawaguchi, K., Zhang, J.: Strain-balanced criteria for multiple quantum well structures and its signature in x-ray rocking curves. Cryst. Growth Des. 2(4), 287–292 (2002)

    Article  Google Scholar 

  • El Kurdi, M., Kociniewski, T., Ngo, T.-P., Boulmer, J., Débarre, D., Boucaud, P., Damlencourt, J.F., Kermarrec, O., Bensahel, D.: Enhanced photoluminescence of heavily n-doped germanium. APL 94, 191107-1–191107-3 (2009)

    Google Scholar 

  • Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials and carrier mobility in strained Si, Ge, and SiGe alloys. JAP 80, 2234–2252 (1996)

    ADS  Google Scholar 

  • Gassenq, A., Gencarelli, F., Van Campenhout, J., Shimura, Y., Loo, R., Narcy, G., Vincent, B., Roelkens, G.: GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 20, 27297–27303 (2012)

    Article  ADS  Google Scholar 

  • Goodman, C.H.L.: Direct-gap group IV semiconductors based on tin. IEEE Proc. I Solid State Electron Devices 129, 189–192 (1982)

    Article  ADS  Google Scholar 

  • Kouvetakis, J., Menedez, J., Chizmeshya, A.V.G.: Tin based group IV semiconductors: new platforms for opto and micro electronics and silicon. Annu. Rev. Mat. Res. 36, 497–554 (2006)

    Article  ADS  Google Scholar 

  • Lever, L., Ikonić, Z., Valavanis, A., Kelsall, R.W., Myronov, M., Leadley, D.R., Hu, Y., Owens, N., Gardes, F.Y., Reed, G.T.: Optical absorption in highly strained Ge/SiGe quantum wells: the role of Γ → Δ scattering. JAP 112(12), 123105-1–123105-7 (2012)

    ADS  Google Scholar 

  • Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegman, W., Wood, T.H., Burrus, C.A.: Electric field dependence of optical absorption near the band gap of quantum-well structures. Phy. Rev. B 32(2), 1043–1060 (1985)

    Article  ADS  Google Scholar 

  • Roelkens, G., et al.: Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE JSQE. (2014). doi:10.1109/JSTQE.2013.2294460

  • Singh, J.: Electronic and Optical Properties of Semiconductor Structures. Cambridge University Press, New York (2005)

    Google Scholar 

  • Soref, R.A.: The past, present, and future of silicon photonics. IEEE JSQE 12, 1678–1687 (2006)

    Google Scholar 

  • Soref, R.A., Perry, C.H.: Predicted bandgap of the new semiconductor SiGeSn. JAP 69, 539–541 (1991)

    ADS  Google Scholar 

  • Stern, F.: Iteration methods for calculating self-consistent fields in semiconductor inversion layers. J. Comput. Phys. 6, 56–67 (1970)

    Article  ADS  MATH  Google Scholar 

  • Tan, I.H., Snider, G.L., Chang, L.D., Hu, E.L.: A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. JAP 68, 4071–4076 (1990)

    ADS  Google Scholar 

  • Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

    Article  ADS  Google Scholar 

  • Yahyaoui, N., Sfina, N., Lazzari, J.-L., Bournel, A., Said, M.: Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection. Phys. Status Solidi C 11(11–12), 1561–1565 (2014)

    Article  Google Scholar 

  • Yahyaoui, N., Sfina, N., Lazzari, J.-L., Bournel, A., Said, M.: Stark shift of the absorption spectra in Ge/Ge1xSnx/Ge type-I single QW cell for mid-wavelength infra-red modulators. Superlattices Microstruct 85, 629–637 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by UGC, Govt. of India through the SAP project grant for the Department of Electronics Engineering in the thrust area, Modeling of Semiconductor Nanostructured Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Pareek.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 15.

Guest edited by Julien Javaloyes, Weida Hu, Slawek Sujecki and Yuh-Renn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareek, P., Das, M.K. Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced QWIP. Opt Quant Electron 48, 228 (2016). https://doi.org/10.1007/s11082-016-0498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0498-x

Keywords

Navigation