Skip to main content
Log in

Performance Prediction of a Quantum Well Infrared Photodetector Using GeSn/SiGeSn Structure

  • NANOELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

QWIP using group IV elements have created more interest among researchers for its potential application in optical communication as well as in optical interconnects. This paper presents modeling and theoretical analysis of Sn-based tensile strained type I direct band gap QWIP in which the active region has a multiple quantum well structure formed with Ge0.92Sn0.08 quantum wells separated by Si0.11Ge0.7Sn0.19 barriers. The structure reported by V. Ryzhii et al. has been reproduced and the parameters like responsivity, power density and the dark current density have been analytically calculated. A comprehensive comparison of responsivity and power density of this proposed structure with the existing QWIP structure made of GaAs/InGaAs is reported here. An improvement in the field of responsivity is observed with the proposed model. The reduction of threshold power density corresponds to an effective operation of the QWIPs in incident infrared radiation. The intersubband electron transition and tunneling electron injection effects are considered here to predict a better performance of the proposed structure operated in infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74, R1 (1993).

    Article  MathSciNet  Google Scholar 

  2. T. Chakraborty and V. M. Apalkov, “Quantum cascade transitions in nanostructures,” Adv. Phys. 52, 455 (2003).

    Article  Google Scholar 

  3. V. Chakraborty, B. Mukhopadhyay, and P. K. Basu, “Effect of different loss mechanisms in SiGeSn based mid_infrared laser,” Semiconductors 49, 836 (2015).

    Article  Google Scholar 

  4. H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507 (1992).

    Article  Google Scholar 

  5. P. Pareek, M. K. Das, and S. Kumar, “Theoretical analysis of tin incorporated group IV alloy based QWIP,” Superlattice and Microstructures 107, 56 (2017).

    Article  Google Scholar 

  6. P. Pareek and M. K. Das, “Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced QWIP,” Opt. Quant. Electron. 48, 228 (2016).

    Article  Google Scholar 

  7. K. K. Choi, “Generalized relationship between gain, noise, and capture probability of quantum well infrared photodetectors,” Appl. Phys. Lett. 65, 1266 (1994).

    Article  Google Scholar 

  8. S. D. Gunapala and S.V. Bandara, “GaAs/AIGaAs based quantum well infrared photodetector focal plane arrays,” in Hand Book of Infrared Detection Technologies (Elsvier, 2002), p. 83.

    Google Scholar 

  9. S. D. Gunapala, S. V. Bandara, S. B. Rafol, and D. Z. Ting, “Quantum well infrared photodetectors,” Semicoductors&Semimetals 84, 59 (2011).

    Google Scholar 

  10. M. J. Deen and P. K. Basu, Silicon Photonics: Fundamentals and Devices (Wiley, Chichester, 2012).

    Book  Google Scholar 

  11. M. Bauer, J. Taraci, J. Tolle, A. V. G. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn Semiconductors for bandgap and lattice engineering,” Appl. Phys. Lett. 81, 2992 (2002).

    Article  Google Scholar 

  12. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1 – ySny alloys: a comparative Ge1 – ySny /Ge1 – xSix study,” Phys. Rev. B. 73, 125207 (2006).

    Article  Google Scholar 

  13. R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Q. Yu, “Ge1 – ySny photoconductor structures at 1.55 μm: from advanced materials to prototype devices,” J. Vac. Sci. Technol. B 26, 1952 (2008).

    Article  Google Scholar 

  14. S. W. Chang and S. L. Chuang, “Theory of optical gain of Ge–SixGeySn1 – x – y quantum-well lasers,” IEEE J. Quantum Electron. 43, 249 (2007).

    Article  Google Scholar 

  15. G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1 – z–SixGeySn1 – x – y multiple quantum well lasers,” IEEE J. Quant. Electron. 46, 1813 (2010).

    Article  Google Scholar 

  16. V. Chakraborty, B. Mukhopadhyay, and P. K. Basu, “Performance prediction of an electro absorption modulator at 1550 nm using GeSn/SiGeSn quantum well structure,” Phys. E 50, 67 (2013).

    Article  Google Scholar 

  17. P. Moontragoon, N. Vukmirovíc, Z. Ikoníc, and P. Harrison, “SnGe asymmetric quantum well electro absorption modulators for long wave silicon photonics,” IEEE J. Sel. Top. Quant. Electron. 16, 100 (2010).

    Article  Google Scholar 

  18. V. Ryzhii, “Characteristics of Quantum well infrared photodetector,” J. Appl. Phys. 81, 6442 (1997).

    Article  Google Scholar 

  19. C. G. Van De Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871 (1989).

    Article  Google Scholar 

  20. C. G. Van De Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B 57, 6493 (1998).

    Article  Google Scholar 

  21. J. Menendez and J. Kouvetakis, “Type-I Ge/GeSiSn strained layer heterostructures with a direct Ge band gap,” Appl. Phys. Lett. 85, 1175 (2004).

    Article  Google Scholar 

  22. G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1 – z–SixGeySn1 – x – y multiple quantum-well lasers,” IEEE J. Quant. Electron. 46, 1813 (2010).

    Article  Google Scholar 

  23. S. Dey, V. Chakraborty, B. Mukhopadhyay, and G. Sen, “Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode,” J. Semicond. 39, 104003 (2018).

    Article  Google Scholar 

  24. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramovitz and I. A. Stegun (Dover, New York, 1965; Nauka, Moscow, 1979).

  25. V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 206 (2002).

    Google Scholar 

  26. V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8 (2004).

    Article  Google Scholar 

  27. Non-perturbative Quantum Field Theory: Mathematical Aspects and Applications, ed. by Frohlich Jurg, in Advanced Series in Mathematical Physics, (World Scientific Publishing, 1992), Vol. 15.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The first author (SD) acknowledges support by TEQIP-Phase III under University College of Technology-Calcutta University (UCT-CU) through award of fellowship. The second author (VC) acknowledges supports from Poddar Institute of Management and Technology (ECE Dept), Kolkata.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Dey, G. Sen, V. Chakraborty or B. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Sen, G., Chakraborty, V. et al. Performance Prediction of a Quantum Well Infrared Photodetector Using GeSn/SiGeSn Structure. J. Commun. Technol. Electron. 64, 1298–1306 (2019). https://doi.org/10.1134/S106422691911007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691911007X

Keywords:

Navigation