Skip to main content
Log in

Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Basu, R., Chakraborty, V., Mukhopadhyay, B., Basu, P.K.: Predicted performance of Ge/GeSn hetero-phototransistors on Si substrate at 1.55 μm. Opt. Quant Electron. (2013). doi:10.1007/s11082-014-9921-3

    Google Scholar 

  • Basu, R., Chakraborty, V., Mukhopadhyay, B. and Basu, P. K.: Performance studies of a proposed Ge-GeSn-Ge heterojunction phototransistor and comparison with InGaAs-based Phototransistor. In: UK Semiconductors Conference 2014, University of Sheffield, UK, July 9–10, 2014a

  • Basu, R., Chakraborty, V., Mukhopadhyay, B. and Basu, P. K.: Spectral and frequency response and signal to noise ratio of gesn-based heterojunction phototransistors. In: IEEE Photonics Conference 2014, (IEEE Photonics Society Annual Meeting) San Diego, CA, USA, October 12–26, 2014b. (Accepted for oral presentation)

  • Basu, R., Chakraborty, V., Mukhopadhyay, B. and Basu, P. K.: Signal-to-noise ratio for a Ge-GeSn-GeSn hetero phototransistors at 1.55 µm, CODEC 2015, December, Swissotel, Kolkata

  • Bauer, M., Taraci, J., Tolle, J., Chizmeshya, A.V.G., Zollner, S., Smith, D.J., Menendez, J., Hu, C., Kouvetakis, J.: Ge–Sn semiconductors for band-gap and lattice engineering. Appl. Phys. Lett. 81(1–3), 2992 (2002)

    Article  ADS  Google Scholar 

  • Chakraborty, V., Mukhopadhyay, B., Basu, P.K.: Performance prediction of an electro absorption modulator at 1550 nm using GeSn/SiGeSn quantum well structure. Phys. E 50, 67–72 (2013)

    Article  Google Scholar 

  • Chang, G.E., Chang, C.O.: Tensile-strained Ge/SiGeSn quantum wells for polarization-insensitive electro-absorption waveguide modulators. IEEE J. Quantum Electron. 48(4), 533–541 (2012)

    Article  ADS  Google Scholar 

  • Chang, S.W., Chuang, S.L.: Theory of optical gain of Ge-Si(x)Ge(y)Sn(1-x-y) quantum-well lasers. IEEE J. Quantum Electron. 43(3), 249–256 (2007)

    Article  ADS  Google Scholar 

  • Chang, G.E., Chang, S.W., Chuang, S.L.: Strain-balanced GezSn1 − z–SixGeySn1 − x−y multiple-quantum-well lasers. IEEE J. Quantum Electron. 46(12), 1813–1820 (2010)

    Article  ADS  Google Scholar 

  • Chizmeshy, A.V.G., Ritter, C., Tolle, J., Cook, C., Menendez, J., Kouvetakis, J.: Fundamental studies of P(GeH3)3, as(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors. Chem. Mater. 18, 6266–6277 (2006)

    Article  Google Scholar 

  • D’Costa, V.R., Cook, C.S., Birdwell, A.G., Littler, C.L., Canonico, M., Zollner, S., Kouvetakis, J., Menendez, J.: Optical critical points of thin-film Ge1 − ySny alloys: a comparative Ge1 − ySny/Ge1 − x Six study. Phys. Rev. B 73(1–16), 125207 (2006)

    Article  ADS  Google Scholar 

  • D’Costa, V.R., Fang, Y., Mathews, J., et al.: Sn alloying as a means of increasing optical absorption in Ge at the C- and L- telecommunication bands. Semicond. Sci. Technol. 24(1–8), 115006 (2009)

    Article  ADS  Google Scholar 

  • Deen, M.J., Basu, P.K.: Silicon Phonics: Fundamentals and Devices. Wiley, Chichester (2012)

    Book  Google Scholar 

  • Frimel, S.M., Roenker, K.P.: A thermionic-field-diffusion model for Npn bipolar heterojunction phototransistors. J. Appl. Phys. 82, 1427–1437 (1997a)

    Article  ADS  Google Scholar 

  • Frimel, S.M., Roenker, K.P.: Gummel-Poon model for Npn heterojunction bipolar phototransistor. J. Appl. Phys. 82, 3581–3592 (1997b)

    Article  ADS  Google Scholar 

  • Khan, H.A., Rezazadeh, A.A., Sohaib, S.: Modeling and analysis of the spectral response for AlGaAs/GaAs HPTs for short wavelength optical communication. J. Appl. Phys. 109, 104507 (2011)

    Article  ADS  Google Scholar 

  • Menendez, J., Kouvetakis, J.: Type-I Ge/GeSiSn strained layer heterostructures with a direct Ge band gap. Appl. Phys. Lett. 85, 1175–1178 (2004)

    Article  ADS  Google Scholar 

  • Moontragoon, P., Vukmirovi´c, N., Ikoni´c, Z., Harrison, P.: SnGe asymmetric quantum well electroabsorption modulators for long-wave silicon photonics. IEEE J. Sel. Top. Quantum Electron. 16(1), 100–105 (2010)

    Article  Google Scholar 

  • Oehme, M., Schmid, M., Kaschel, M., Gollhofer, M., Widmann, D., Kasper, E., Schulze, J.: GeSn p–i–n detectors integrated on Si with up to 4% Sn. Appl. Phys. Lett. 101(14), 141110 (2012)

    Article  ADS  Google Scholar 

  • Park, M.S., Jang, J.H.: Enhancement of optical gain in floating-base InGaP-GaAs heterojunction phototransistors. IEEE Photonics Technol. Lett. 22, 1202–1204 (2010)

    Article  ADS  Google Scholar 

  • Pavesi, L., Lockwood, D.J. (eds.): Silicon Photonics. Springer, New York (2004)

    Google Scholar 

  • Roucka, R., Xie, J., Kouvetakis, J., Mathews, J., D’Costa, V., Menendez, J., Tolle, J., Yu, S.Q.: Ge1 − ySny photoconductor structures at 1.55 μm: from advanced materials to prototype devices. J. Vac. Sci. Technol. B 26, 1952–1959 (2008)

    Article  Google Scholar 

  • Schaevitz, R.K., Edwards, E.H., Roth, J.E., Fei, E.T., Rong, Y., Wahl, P., Kamins, T.I., Harris, J.S., Miller, D.A.: Simple electroabsorption calculator for designing 1310 nm and 1550 nm modulators using germanium quantum wells. IEEE J. Quantum Electron. 48(2), 187–197 (2012)

    Article  ADS  Google Scholar 

  • Scott, D.C., Fetterman, H.R.: Indium Phosphide and Related Materials: Processing, Technology and Devices. In: Katz, A. (ed.), pp. 351–403. Artech House (1995)

  • Su, S., Cheng, B., Xue, C., Wang, W., et al.: GeSn p-i-n photodetector for all telecommunication band detection. Opt. Express 19(7), 6400–6405 (2011)

    Article  ADS  Google Scholar 

  • Sun, G., Soref, R.A., Cheng, H.H.: Design of a Si-based lattice-matched room temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. Opt. Express 18(9), 19957–19965 (2010a)

    Article  ADS  Google Scholar 

  • Sun, G., Soref, R.A., Cheng, H.H.: Design of an electrically pumped SiGeSn/GeSn/SiGeSn double heterostructure mid infrared laser. J. Appl. Phys. 108, 033107 (2010b)

    Article  ADS  Google Scholar 

  • Tan, S.H., Chen, H.R., Chen, W.T., Hsu, M.K., Lin, A.H., Lour, W.S.: Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation. IEEE Trans. Electron Dev. 52, 204–210 (2005)

    Article  ADS  Google Scholar 

  • Zhang, Y., Li, C., Chen, S.Y., Lai, H.K., Kang, J.Y.: Numerical analysis of SiGe heterojunction Bipolar phototransistor based on virtual substrate. Solid-State Electron. 52, 1782–1790 (2008)

    Article  ADS  Google Scholar 

  • Zhu, Y.H., Xu, Q., Fan, W.J., Wang, J.W.: Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser. J. Appl. Phys. 107, 073108 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first author (VC) acknowledges supports from the UGC, New Delhi, India sponsored Project Fellowship under its RFSMS scheme and B.P. Poddar Institute of Management and Technology (ECE Dept). The second author (SD) acknowledges supports from the TEQUIP scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedatrayee Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, V., Dey, S., Basu, R. et al. Current gain and external quantum efficiency modeling of GeSn based direct bandgap multiple quantum well heterojunction phototransistor. Opt Quant Electron 49, 125 (2017). https://doi.org/10.1007/s11082-017-0947-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0947-1

Keywords

Navigation