Skip to main content
Log in

(Spectral) Chebyshev collocation methods for solving differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, the efficient numerical solution of Hamiltonian problems has been tackled by defining the class of energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). Their derivation relies on the expansion of the vector field along the Legendre orthonormal basis. Interestingly, this approach can be extended to cope with other orthonormal bases and, in particular, we here consider the case of the Chebyshev polynomial basis. The corresponding Runge-Kutta methods were previously obtained by Costabile and Napoli (Numer. Algo., 27, 119–130 2021). In this paper, the use of a different framework allows us to carry out a novel analysis of the methods also when they are used as spectral formulae in time, along with some generalizations of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Notes

  1. In fact, for isolated mechanical systems, H has the physical meaning of the total energy.

  2. This amounts to study HBVMs as continuous-stage Runge-Kutta methods, as it has been done in [1, 2].

  3. Hereafter, |⋅| will devote any convenient vector norm.

  4. For sake of simplicity, hereafter we shall assume f be an analytic function.

  5. Clearly, (15) is derived by considering the special case ω(c) ≡ 1.

  6. As is usual, hereafter, Tj(x), j ≥ 0, denote the Chebyshev polynomials of the first kind.

  7. Here, we have used the name of the Matlab functions implementing the two transformations.

  8. As is usual, 1 flop denotes a basic fl oating-point op eration.

  9. Clearly, when k = s, (41) reduces to \(\mathcal { I}_{s}=\mathcal { P}_{s}X_{s}\), according to Lemma 1.

  10. The second property has already been used in the proof of Lemma 3.

  11. Also this property has already been used, in the proof of Theorem 7.

  12. For sake of completeness, we also report that the former method requires a total of 106449 fixed-point iterations, whereas the latter 100642.

  13. Consequently, the considered timesteps are approximately in the interval [0.4, 1].

References

  1. Amodio, P., Brugnano, L., Iavernaro, F.: A note on the continuous-stage Runge-Kutta-(Nyström) formulation of hamiltonian boundary value methods (HBVMs). Appl. Math. Comput. 363, 124634 (2019). https://doi.org/10.1016/j.amc.2019.124634

    MathSciNet  MATH  Google Scholar 

  2. Amodio, P., Brugnano, L., Iavernaro, F.: Continuous-stage Runge-Kutta approximation to differential problems. Axioms 11, 192 (2022). https://doi.org/10.3390/axioms11050192

    Article  Google Scholar 

  3. Amodio, P., Brugnano, L., Iavernaro, F.: Analysis of spectral hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems. Numer. Algo. 83, 1489–1508 (2020). https://doi.org/10.1007/s11075-019-00733-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Amodio, P., Brugnano, L., Iavernaro, I.: Arbitrarily high-order energy-conserving methods for Poisson problems. Numer. Algorithms 91, 861–894 (2022). https://doi.org/10.1007/s11075-022-01285-z

    Article  MathSciNet  MATH  Google Scholar 

  5. Barletti, L., Brugnano, L., Tang, Y., Zhu, B.: Spectrally accurate space-time solution of Manakov systems. J. Comput. Appl. Math. 377, 112918 (2020). https://doi.org/10.1016/j.cam.2020.112918

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, USA (2016)

    MATH  Google Scholar 

  7. Brugnano, L., Gurioli, G., Zhang, C.: Spectrally accurate energy-preserving methods for the numerical solution of the “Good” Boussinesq equation. Numer. Methods Partial Differential Equations 35, 1343–1362 (2019). https://doi.org/10.1002/num.22353

    Article  MathSciNet  MATH  Google Scholar 

  8. Brugnano, L., Iavernaro, F.: Line integral methods for conservative problems. Chapman et hall/CRC, USA (2016)

    Book  MATH  Google Scholar 

  9. Brugnano, L., Iavernaro, F.: Line integral solution of differential problems. Axioms 7(2), 36 (2018). https://doi.org/10.3390/axioms7020036

    Article  MATH  Google Scholar 

  10. Brugnano, L., Iavernaro, F.: A general framework for solving differential equations. Ann. Univ. Ferrara 68, 243–258 (2022). https://doi.org/10.1007/s11565-022-00409-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Brugnano, L., Iavernaro, F., Montijano, J. I., Rández, L.: Spectrally accurate space-time solution of hamiltonian PDEs. Numer. Algo. 81, 1183–1202 (2019). https://doi.org/10.1007/s11075-018-0586-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J.AIAM J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of hamiltonian BVMs. J. Comput. Appl. Math. 236, 375–383 (2011). https://doi.org/10.1016/j.cam.2011.07.022

    Article  MathSciNet  MATH  Google Scholar 

  14. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012). https://doi.org/10.1016/j.amc.2012.01.074

    MathSciNet  MATH  Google Scholar 

  15. Brugnano, L., Montijano, J. I., Rández, L.: High-order energy-conserving line integral methods for charged particle dynamics. J. Comput. Phys. 396, 209–227 (2019). https://doi.org/10.1016/j.jcp.2019.06.068

    Article  MathSciNet  MATH  Google Scholar 

  16. Brugnano, L., Montijano, J. I., Rández, L.: On the effectiveness of spectral methods for the numerical solution of multi-frequency highly-oscillatory hamiltonian problems. Numer. Algo. 81, 345–376 (2019). https://doi.org/10.1007/s11075-018-0552-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Butcher, J. C.: B-Series. Algebraic analysis of numerical methods. Springer Nature, Switzerland (2021)

    Book  MATH  Google Scholar 

  18. Celledoni, E., McLachlan, R. I., McLaren, D. I., Owren, B., Quispel, G. R. W., Wright, W. M.: Energy-preserving Runge-Kutta methods. M2AN Math. Model. Numer. Anal. 43, 645–649 (2009). https://doi.org/10.1051/m2an/2009020

    Article  MathSciNet  MATH  Google Scholar 

  19. Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integrators: the case of quadratic and hamiltonian invariants. Numer. Math. 103, 575–590 (2006). https://doi.org/10.1007/s00211-006-0003-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Costabile, F., Napoli, A.: A method for global approximation of the initial value problem. Numer. Algo. 27, 119–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Costabile, F., Napoli, A: Stability of Chebyshev collocation methods. Comput. Math. Appl. 47, 659–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Costabile, F., Napoli, A.: A class of collocation methods for numerical integration of initial value problems. Comput. Math. Appl. 62, 3221–3235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, K., Qin, M.: Symplectic geometric algorithms for hamiltonian systems. Translated and revised from the chinese original. With a foreword by Feng Duan. Zhejiang Science and Technology Publishing House, Hangzhou. Springer, Heidelberg (2010)

  24. Hairer, E.: Energy preserving variant of collocation methods. JAIAM J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Hairer, E., Lubich, C. h., Wanner, G.: Geometric numerical integration, 2nd ed. Springer, Berlin, Germany (2006)

    MATH  Google Scholar 

  26. Hairer, E., G. Wanner.: Solving ordinary differential equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  27. Iavernaro, F.: s-stage trapezoidal methods for the conservation of hamiltonian functions of polynomial type. AIP Conf. Proc. 936, 603–606 (2007). https://doi.org/10.1063/1.2790219

    Article  MATH  Google Scholar 

  28. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. Cambridge University Press, UK (2004)

    MATH  Google Scholar 

  29. Li, Y.-W., Wu, X.: Functionally fitted energy-preserving methods for solving oscillatory nonlinear hamiltonian systems. SIAM J. Numer. Anal. 54, 2036–2059 (2016). https://doi.org/10.1137/15M1032752

    Article  MathSciNet  MATH  Google Scholar 

  30. McLachlan, R. I., Quispel, G. R. W., Robidoux, N.: Geometric integration using discrete gradients. Phil. Trans. R. Soc. Lond. A 357, 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sanz-Serna, J.M.: Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more. SIAM Rev. 58, 3–33 (2016). https://doi.org/10.1137/151002769

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, UK (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the reviewers, for the careful reading of the manuscript and the precious comments and remarks.

Funding

The authors wish to thank the mrSIR project (https://www.mrsir.it/en/about-us/) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Brugnano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amodio, P., Brugnano, L. & Iavernaro, F. (Spectral) Chebyshev collocation methods for solving differential equations. Numer Algor 93, 1613–1638 (2023). https://doi.org/10.1007/s11075-022-01482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01482-w

Keywords

Mathematics Subject Classification (2010)

Navigation