Skip to main content
Log in

Analysis of spectral Hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, the numerical solution of stiffly/highly oscillatory Hamiltonian problems has been attacked by using Hamiltonian boundary value methods (HBVMs) as spectral methods in time. While a theoretical analysis of this spectral approach has been only partially addressed, there is enough numerical evidence that it turns out to be very effective even when applied to a wider range of problems. Here, we fill this gap by providing a thorough convergence analysis of the methods and confirm the theoretical results with the aid of a few numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In fact, if problem (1) is non autonomous, t can be included in the state vector.

  2. The used arguments are mainly adapted from [21].

  3. Hereafter, for sake of clarity, we shall denote by |⋅| any convenient vector or matrix norm.

  4. The proof uses arguments similar to those of [13, Theorem 4].

  5. Hereafter, \(\doteq \) means “equal within the round-off error level of the used finite precision arithmetic”.

  6. This latter criterion was that used in [18] and [9].

  7. In such a case, the machine precision is u ≈ 10− 16.

  8. i.e., \(0<c_{1}<\dots <c_{k}<1\) are the zeros of Pk.

  9. Hereafter, the initial approximation \(\hat {\boldsymbol {\gamma }}^{0}=\bf 0\) is conveniently used.

  10. i.e., factor Σ− 1.

  11. As matter of fact, considering more stringent tolerances does not improve the accuracy of the computed numerical solution.

  12. In this case, the Gauss methods exhibit a super-convergence in the conservation of the Hamiltonian (3 times the usual order) and HBVMs do the same with the angular momentum. This is due to the fact that the error is measured only at the end of each period.

References

  1. Amodio, P., Brugnano, L., Iavernaro, F.: Energy-conserving methods for Hamiltonian Boundary Value Problems and applications in astrodynamics. Adv. Comput. Math. 41, 881–905 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betsch, P., Steinmann, P.: Inherently energy conserving time finite elements for classical mechanics. J. Comp. Phys. 160, 88–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bottasso, C.L.: A new look at finite elements in time: a variational interpretation of Runge–Kutta methods. Appl. Numer. Math. 25, 355–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brugnano, L., Calvo, M., Montijano, J.I., Rández, L.: Energy preserving methods for Poisson systems. J. Comput. Appl. Math. 236, 3890–3904 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods. Numer. Algorithm. 65, 633–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Frasca-Caccia, G., Iavernaro, F.: Line Integral Solution of Hamiltonian PDEs. Mathematics 7(3), article n. 275. https://doi.org/10.3390/math7030275 (2019)

  7. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman and hall/CRC, Boca Raton (2016)

    Book  MATH  Google Scholar 

  8. Brugnano, L., Iavernaro, F.: Line Integral Solution of Differential Problems. Axioms 7(2), article n. 36. https://doi.org/10.3390/axioms7020036 (2018)

  9. Brugnano, L., Iavernaro, F., Montijano, J.I., Rández, L.: Spectrally accurate space-time solution of Hamiltonian PDEs. https://doi.org/10.1007/s11075-018-0586-z(2018)

  10. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian BVMs (HBVMs): A family of “drift-free” methods for integrating polynomial Hamiltonian systems. AIP Conf. Proc. 1168, 715–718 (2009)

    Article  MATH  Google Scholar 

  11. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5(1-2), 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian BVMs. J. Comput. Appl. Math. 236, 375–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Brugnano, L., Iavernaro, F., Trigiante, D.: A two-step, fourth-order method with energy preserving properties. Comput. Phys. Commun. 183, 1860–1868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brugnano, L., Magherini, C.: Blended Implementation of Block Implicit Methods for ODEs. Appl. Numer. Math. 42, 29–45 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brugnano, L., Magherini, C.: The BiM Code for the Numerical Solution of ODEs. J. Comput. Appl. Math. 164–165, 145–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brugnano, L., Magherini, C., Mugnai, F.: Blended implicit methods for the numerical solution of DAE problems. J. Comput. Appl. Math. 189, 34–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brugnano, L., Montijano, J.I., Rández, L.: On the effectiveness of spectral methods for the numerical solution of multi-frequency highly-oscillatory Hamiltonian problems. Numer. Algorithms. https://doi.org/10.1007/s11075-018-0552-9 (2018)

  19. Brugnano, L., Sun, Y.: Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems. Numer. Algorithm. 65, 611–632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT 51, 91–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davis, P.J.: Interpolation & Approximations. Dover, New York (1975)

    Google Scholar 

  22. Franco, J.M.: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Comm. 177(6), 479–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Franco, J.M.: Runge-kutta methods adapted to the numerical integration of oscillatory problems. Appl. Numer. Math. 50, 427–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd revised edition. Springer, Heidelberg (2002)

    Google Scholar 

  26. Hoang, N.S., Sidje, R.B., Cong, N.H.: On functionally-fitted Runge-Kutta methods. BIT 46, 861–874 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comp. 26, 415–426 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hulme, B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Discret. Comp. 26, 881–891 (1972)

    MathSciNet  MATH  Google Scholar 

  29. Martin-Vaquero, J., Vigo-Aguiar, J.: Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithm. 48(4), 327–346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Montijano, J.I., Van Daele, M., Calvo, M.: Functionally fitted explicit two step peer methods. J. Sci. Comput. 64(3), 938–958 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalogiratou, Z., Simos, T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyströ,m methods for the numerical solution of the Schrödinger equation and related problem -a method of 8th algebraic order. J. Math. Chem. 31 (2), 211–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Y. -W., Wu, X.: Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems. SIAM J. Numer. Anal. 54(4), 2036–2059 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Paternoster, B.: Runge-kutta (-nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sanz-Serna, J.M.: Runge-kutta schemes for Hamiltonian systems. BIT 28(4), 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simos, T.E.: A trigonometrically-fitted method for long-time integration of orbital problems. Math. Comput. Modell. 40(11-12), 1263–1272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tang, W., Sun, Y.: Time finite element methods: a unified framework for numerical discretizations of ODEs. Appl. Math. Comp. 219, 2158–2179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, B., Meng, F., Fang, Y.: Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations. Appl. Numer. Math. 119, 164–178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to two unknown referees, for the careful reading of the manuscript, and for their precious comments, which allowed to formulate in a cleaner and more precise way the results presented in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Brugnano.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amodio, P., Brugnano, L. & Iavernaro, F. Analysis of spectral Hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems. Numer Algor 83, 1489–1508 (2020). https://doi.org/10.1007/s11075-019-00733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00733-7

Keywords

Mathematics Subject Classification (2010)

Navigation