Skip to main content
Log in

A numerical algorithm to reduce ill-conditioning in meshless methods for the Helmholtz equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Some meshless methods have been applied to the numerical solution of boundary value problems involving the Helmholtz equation. In this work, we focus on the method of fundamental solutions and the plane waves method. It is well known that these methods can be highly accurate assuming smoothness of the domains and the boundary data. However, the matrices involved are often ill-conditioned and the effect of this ill-conditioning may drastically reduce the accuracy. In this work, we propose a numerical algorithm to reduce the ill-conditioning in both methods. The idea is to perform a suitable change of basis. This allows to obtain new basis functions that span exactly the same space as the original meshless method, but are much better conditioned. In the case of circular domains, this technique allows to obtain errors close to machine precision, with condition numbers of order O(1), independently of the number of basis functions in the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Continua 2, 251–266 (2005)

    Google Scholar 

  3. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to some inverse eigenproblems. SIAM J. Sci. Comp. 35, A1689–A1708 (2013)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.J.S., Valtchev, S.S.: Numerical comparison of two meshfree methods for acoustic wave scattering. Eng. Anal. Bound. Elements 29, 371–382 (2005)

    Article  Google Scholar 

  5. Antunes, P. R. S.: Reducing the ill conditioning in the method of fundamental solutions, submitted

  6. Babŭska, I., Melenk, J.M.: The partition of unity method. Internat J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MathSciNet  Google Scholar 

  7. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–26 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MathSciNet  Google Scholar 

  9. Borzdov, G.N.: Plane-wave superpositions defined by orthonormal scalar functions on two and three dimensional manifolds. Phys. Rev. E 61, 4462–78 (1999)

    Article  MathSciNet  Google Scholar 

  10. Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35, 255–299 (1998)

    Article  MathSciNet  Google Scholar 

  11. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering, 3rd Edn. Springer, Berlin (2013)

  12. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  Google Scholar 

  13. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM M2AN 43, 297–331 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49, 264–284 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Methods 6, 181–197 (2009)

    Article  MathSciNet  Google Scholar 

  17. Hu, Q., Yuan, L.: A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations. Int. J. Numer. Anal. Model. 11, 587–607 (2014)

    MathSciNet  Google Scholar 

  18. Hu, Q., Zhang, H.: Substructuring preconditioners for the systems arising from plane wave discretizations of Helmholtz equations. SIAM J. Sci. Comput. 38 (4), 2232–2261 (2016)

    Article  MathSciNet  Google Scholar 

  19. Katsurada, M.: A mathematical study of the charge simulation method. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Katsurada, M.: Charge simulation method using exterior mapping functions. Jpn. J. Ind. Appl. Math. 11(1), 47–61 (1994)

    Article  MathSciNet  Google Scholar 

  21. Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Jpn. J. Appl. Math. 5, 123–33 (1988)

    Article  MathSciNet  Google Scholar 

  22. Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. U.S.S.R Comput. Math. Math. Phys. 4, 82–126 (1964)

    Article  MathSciNet  Google Scholar 

  23. Kuttler, J.R., Sigillito, V.G.: Bounding eigenvalues of elliptic operators. SIAM J. Math. Anal. 9(4), 768–773 (1978)

    Article  MathSciNet  Google Scholar 

  24. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–50 (1977)

    Article  MathSciNet  Google Scholar 

  25. Monk, P., Wang, D.: A least-squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175, 121–136 (1999)

    Article  MathSciNet  Google Scholar 

  26. Olver, F.W.J.: Bessel functions of integer order. In: Abramowitz, M, Stegun, I A. (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

  27. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–64 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referees for many suggestions that clearly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. S. Antunes.

Additional information

The research was partially supported by FCT, Portugal, through the program “Investigador FCT” with reference If/00177/2013 and the scientific project PTDC/MAT-CAL/4334/2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, P.R.S. A numerical algorithm to reduce ill-conditioning in meshless methods for the Helmholtz equation. Numer Algor 79, 879–897 (2018). https://doi.org/10.1007/s11075-017-0465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0465-z

Keywords

Navigation