Skip to main content
Log in

A new numerical approach to the solution of the 2-D Helmholtz equation with optimal accuracy on irregular domains and Cartesian meshes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new numerical approach for the time independent Helmholtz equation on irregular domains has been developed. Trivial Cartesian meshes and simple 9-point stencil equations with unknown coefficients are used for 2-D irregular domains. The calculation of the coefficients of the stencil equations is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy. At similar 9-point stencils, the accuracy of the new approach is two orders higher for the Dirichlet boundary conditions and one order higher for the Neumann boundary conditions than that for the linear finite elements. The numerical results for irregular domains also show that at the same number of degrees of freedom, the new approach is even much more accurate than the quadratic and cubic finite elements with much wider stencils. The new approach can be equally applied to the Helmholtz and screened Poisson equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kacimi AE, Laghrouche O, Mohamed M, Trevelyan J (2019) Bernstein-bézier based finite elements for efficient solution of short wave problems. Comput Methods Appl Mech Eng 343:166–185

    Article  Google Scholar 

  2. Lieu A, Gabard G, Bériot H (2016) A comparison of high-order polynomial and wave-based methods for helmholtz problems. J Comput Phys 321:105–125

    Article  MathSciNet  MATH  Google Scholar 

  3. Shojaei A, Galvanetto U, Rabczuk T, Jenabi A, Zaccariotto M (2019) A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput Methods Appl Mech Eng 343:100–126

    Article  MathSciNet  Google Scholar 

  4. Oberai AA, Pinsky PM (1998) A multiscale finite element method for the helmholtz equation. Comput Methods Appl Mech Eng 154(3):281–297

    Article  MathSciNet  MATH  Google Scholar 

  5. Farhat C, Harari I, Hetmaniuk U (2003) A discontinuous galerkin method with lagrange multipliers for the solution of helmholtz problems in the mid-frequency regime. Comput Methods Appl Mech Eng 192(11):1389–1419

    Article  MathSciNet  MATH  Google Scholar 

  6. Lam CY, Shu C-W (2017) A phase-based interior penalty discontinuous galerkin method for the helmholtz equation with spatially varying wavenumber. Comput Methods Appl Mech Eng 318:456–473

    Article  MathSciNet  Google Scholar 

  7. Stolk CC (2013) A rapidly converging domain decomposition method for the helmholtz equation. J Comput Phys 241:240–252

    Article  MathSciNet  MATH  Google Scholar 

  8. Stolk CC (2016) A dispersion minimizing scheme for the 3-d helmholtz equation based on ray theory. J Comput Phys 314:618–646

    Article  MathSciNet  MATH  Google Scholar 

  9. Gallistl D, Peterseim D (2015) Stable multiscale petrov-galerkin finite element method for high frequency acoustic scattering. Comput Methods Appl Mech Eng 295:1–17

    Article  MathSciNet  MATH  Google Scholar 

  10. Givoli D, Patlashenko I, Keller JB (1997) High-order boundary conditions and finite elements for infinite domains. Comput Methods Appl Mech Eng 143(1):13–39

    Article  MathSciNet  MATH  Google Scholar 

  11. Gordon D, Gordon R, Turkel E (2015) Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions. J Comput Phys 297:295–315

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng D, Tan X, Zeng T (2017) A dispersion minimizing finite difference scheme for the helmholtz equation based on point-weighting. Comput Math Appl 73(11):2345–2359

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng D, Liu Z, Wu T (2015) A multigrid-based preconditioned solver for the helmholtz equation with a discretization by 25-point difference scheme. Math Comput Simul 117:54–67

    Article  MathSciNet  Google Scholar 

  14. Turkel E, Gordon D, Gordon R, Tsynkov S (2013) Compact 2d and 3d sixth order schemes for the helmholtz equation with variable wave number. J Comput Phys 232(1):272–287

    Article  MathSciNet  MATH  Google Scholar 

  15. Deckers E, Bergen B, Genechten BV, Vandepitte D, Desmet W (2012) An efficient wave based method for 2d acoustic problems containing corner singularities. Comput Methods Appl Mech Eng 241–244:286–301

    Article  MathSciNet  MATH  Google Scholar 

  16. Celiker E, Lin P (2019) A highly-accurate finite element method with exponentially compressed meshes for the solution of the dirichlet problem of the generalized helmholtz equation with corner singularities. J Comput Appl Math 361:227–235

    Article  MathSciNet  MATH  Google Scholar 

  17. Li E, He Z, Wang G, Liu G (2018) An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals. Comput Methods Appl Mech Eng 333:421–442

    Article  MathSciNet  Google Scholar 

  18. Yedeg EL, Wadbro E, Hansbo P, Larson MG, Berggren M (2016) A nitsche-type method for helmholtz equation with an embedded acoustically permeable interface. Comput Methods Appl Mech Eng 304:479–500

    Article  MathSciNet  MATH  Google Scholar 

  19. Magoulès F, Zhang H (2018) Three-dimensional dispersion analysis and stabilized finite element methods for acoustics. Comput Methods Appl Mech Eng 335:563–583

    Article  MathSciNet  Google Scholar 

  20. Diwan GC, Mohamed MS (2019) Pollution studies for high order isogeometric analysis and finite element for acoustic problems. Comput Methods Appl Mech Eng 350:701–718

    Article  MathSciNet  Google Scholar 

  21. Barucq H, Bendali A, Fares M, Mattesi V, Tordeux S (2017) A symmetric trefftz-dg formulation based on a local boundary element method for the solution of the helmholtz equation. J Comput Phys 330:1069–1092

    Article  MathSciNet  MATH  Google Scholar 

  22. Li H, Ladevèze P, Riou H (2018) On wave based weak trefftz discontinuous galerkin approach for medium-frequency heterogeneous helmholtz problem. Comput Methods Appl Mech Eng 328:201–216

    Article  MathSciNet  Google Scholar 

  23. Singer I, Turkel E (1998) High-order finite difference methods for the helmholtz equation. Comput Methods Appl Mech Eng 163(1):343–358

    Article  MathSciNet  MATH  Google Scholar 

  24. Harari I (2006) A survey of finite element methods for time-harmonic acoustics. Comput Methods Appl Mech Eng 195(13):1594–1607

    Article  MathSciNet  MATH  Google Scholar 

  25. Babuška I, Ihlenburg F, Paik E T, Sauter S A (1995) A generalized finite element method for solving the helmholtz equation in two dimensions with minimal pollution. Comput Methods Appl Mech Eng 128(3):325–359

    Article  MathSciNet  MATH  Google Scholar 

  26. Biermann J, von Estorff O, Petersen S, Wenterodt C (2009) Higher order finite and infinite elements for the solution of helmholtz problems. Comput Methods Appl Mech Eng 198(13):1171–1188

    Article  MATH  Google Scholar 

  27. Fang J, Qian J, Zepeda-Núñez L, Zhao H (2018) A hybrid approach to solve the high-frequency helmholtz equation with source singularity in smooth heterogeneous media. J Comput Phys 371:261–279

    Article  MathSciNet  MATH  Google Scholar 

  28. Christodoulou K, Laghrouche O, Mohamed M, Trevelyan J (2017) High-order finite elements for the solution of helmholtz problems. Comput Struct 191:129–139

    Article  Google Scholar 

  29. Gerdes K, Ihlenburg F (1999) On the pollution effect in fe solutions of the 3d-helmholtz equation. Comput Methods Appl Mech Eng 170(1):155–172

    Article  MathSciNet  MATH  Google Scholar 

  30. Du K, Li B, Sun W (2015) A numerical study on the stability of a class of helmholtz problems. J Comput Phys 287:46–59

    Article  MathSciNet  MATH  Google Scholar 

  31. Demkowicz L, Gopalakrishnan J, Muga I, Zitelli J (2012) Wavenumber explicit analysis of a dpg method for the multidimensional helmholtz equation. Comput Methods Appl Mech Eng 213–216:126–138

    Article  MathSciNet  MATH  Google Scholar 

  32. Coox L, Deckers E, Vandepitte D, Desmet W (2016) A performance study of nurbs-based isogeometric analysis for interior two-dimensional time-harmonic acoustics. Comput Methods Appl Mech Eng 305:441–467

    Article  MathSciNet  MATH  Google Scholar 

  33. Mascotto L, Perugia I, Pichler A (2019) A nonconforming trefftz virtual element method for the helmholtz problem: Numerical aspects. Comput Methods Appl Mech Eng 347:445–476

    Article  MathSciNet  MATH  Google Scholar 

  34. Dinachandra M, Raju S (2018) Plane wave enriched partition of unity isogeometric analysis (puiga) for 2d-helmholtz problems. Comput Methods Appl Mech Eng 335:380–402

    Article  MathSciNet  Google Scholar 

  35. Medvinsky M, Tsynkov S, Turkel E (2016) Solving the helmholtz equation for general smooth geometry using simple grids. Wave Motion 62:75–97

    Article  MathSciNet  Google Scholar 

  36. Yang M, Perrey-Debain E, Nennig B, Chazot J-D (2018) Development of 3d pufem with linear tetrahedral elements for the simulation of acoustic waves in enclosed cavities. Comput Methods Appl Mech Eng 335:403–418

    Article  MathSciNet  Google Scholar 

  37. Eslaminia M, Guddati MN (2016) A double-sweeping preconditioner for the helmholtz equation. J Comput Phys 314:800–823

    Article  MathSciNet  MATH  Google Scholar 

  38. Cho MH, Huang J, Chen D, Cai W (2018) A heterogeneous fmm for layered media helmholtz equation i: two layers in r2. J Comput Phys 369:237–251

    Article  MathSciNet  MATH  Google Scholar 

  39. Amara M, Calandra H, Dejllouli R, Grigoroscuta-Strugaru M (2012) A stable discontinuous galerkin-type method for solving efficiently helmholtz problems. Comput Struct 106–107:258–272

    Article  MATH  Google Scholar 

  40. Laghrouche O, Bettess P, Perrey-Debain E, Trevelyan J (2005) Wave interpolation finite elements for helmholtz problems with jumps in the wave speed. Comput Methods Appl Mech Eng 194(2):367–381

    Article  MathSciNet  MATH  Google Scholar 

  41. Ortigosa R, Franke M, Janz A, Gil A, Betsch P (2018) An energy-momentum time integration scheme based on a convex multi-variable framework for non-linear electro-elastodynamics. Comput Methods Appl Mech Eng 339:1–35

    Article  MathSciNet  Google Scholar 

  42. Tezaur R, Kalashnikova I, Farhat C (2014) The discontinuous enrichment method for medium-frequency helmholtz problems with a spatially variable wavenumber. Comput Methods Appl Mech Eng 268:126–140

    Article  MathSciNet  MATH  Google Scholar 

  43. Galagusz R, McFee S (2019) An iterative domain decomposition, spectral finite element method on non-conforming meshes suitable for high frequency helmholtz problems. J Comput Phys 379:132–172

    Article  MathSciNet  Google Scholar 

  44. Britt S, Tsynkov S, Turkel E (2018) Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials. J Comput Phys 354:26–42

    Article  MathSciNet  MATH  Google Scholar 

  45. Magura S, Petropavlovsky S, Tsynkov S, Turkel E (2017) High-order numerical solution of the helmholtz equation for domains with reentrant corners. Appl Numer Math 118:87–116

    Article  MathSciNet  MATH  Google Scholar 

  46. Banerjee S, Sukumar N (2017) Exact integration scheme for planewave-enriched partition of unity finite element method to solve the helmholtz problem. Comput Methods Appl Mech Eng 317:619–648

    Article  MathSciNet  Google Scholar 

  47. Khajah T, Villamizar V (2019) Highly accurate acoustic scattering: Isogeometric analysis coupled with local high order farfield expansion abc. Comput Methods Appl Mech Eng 349:477–498

    Article  MathSciNet  Google Scholar 

  48. Strouboulis T, Babuška I, Hidajat R (2006) The generalized finite element method for helmholtz equation: theory, computation, and open problems. Comput Methods Appl Mech Eng 195(37):4711–4731

    Article  MathSciNet  MATH  Google Scholar 

  49. Strouboulis T, Hidajat R, Babuška I (2008) The generalized finite element method for helmholtz equation. Part ii: effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment. Comput Methods Appl Mech Eng 197(5):364–380

    Article  MATH  Google Scholar 

  50. Chaumont-Frelet T (2016) On high order methods for the heterogeneous helmholtz equation. Comput Math Appl 72(9):2203–2225

    Article  MathSciNet  MATH  Google Scholar 

  51. Jones TN, Sheng Q (2019) Asymptotic stability of a dual-scale compact method for approximating highly oscillatory helmholtz solutions. J Comput Phys 392:403–418

    Article  MathSciNet  Google Scholar 

  52. Wu T (2017) A dispersion minimizing compact finite difference scheme for the 2d helmholtz equation. J Comput Appl Math 311:497–512

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu T, Xu R (2018) An optimal compact sixth-order finite difference scheme for the helmholtz equation. Comput Math Appl 75(7):2520–2537

    Article  MathSciNet  MATH  Google Scholar 

  54. He Z, Liu G, Zhong Z, Wu S, Zhang G, Cheng A (2009) An edge-based smoothed finite element method (es-fem) for analyzing three-dimensional acoustic problems. Comput Methods Appl Mech Eng 199(1):20–33

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu Z, Alkhalifah T (2018) A highly accurate finite-difference method with minimum dispersion error for solving the helmholtz equation. J Comput Phys 365:350–361

    Article  MathSciNet  MATH  Google Scholar 

  56. Ahmadian H, Friswell M, Mottershead J (1998) Minimization of the discretization error in mass and stiffness formulations by an inverse method. Int J Numer Meth Eng 41(2):371–387

    Article  MATH  Google Scholar 

  57. Guddati MN, Yue B (2004) Modified integration rules for reducing dispersion error in finite element method. Comput Methods Appl Mech Eng 193:275–287

    Article  MATH  Google Scholar 

  58. Gyrya V, Lipnikov K (2012) M-adaptation method for acoustic wave equation on square meshes. J Comput Acoust 20:125002–21:23

  59. Krenk S (2001) Dispersion-corrected explicit integration of the wave equation. Comput Methods Appl Mech Eng 191:975–987

    Article  MathSciNet  MATH  Google Scholar 

  60. Marfurt KJ (1984) Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation. Geophysics 49:533–549

    Article  Google Scholar 

  61. Mullen R, Belytschko T (1982) Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int J Numer Methods Eng 18:11–29

    Article  MathSciNet  MATH  Google Scholar 

  62. Seriani G, Oliveira SP (2007) Optimal blended spectral-element operators for acoustic wave modeling. Geophysics 72(5):95–106

    Article  Google Scholar 

  63. Yue B, Guddati MN (2005) Dispersion-reducing finite elements for transient acoustics. J Acoust Soc Am 118(4):2132–2141

    Article  Google Scholar 

  64. He ZC, Cheng AG, Zhang GY, Zhong ZH, Liu GR (2011) Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method (es-fem). Int J Numer Meth Eng 86(11):1322–1338

    Article  MathSciNet  MATH  Google Scholar 

  65. Idesman A, Schmidt M, Foley JR (2011) Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error. Comput Mech 47:555–572

    Article  MathSciNet  MATH  Google Scholar 

  66. Idesman AV, Pham D (2014) Finite element modeling of linear elastodynamics problems with explicit time-integration methods and linear elements with the reduced dispersion error. Comput Methods Appl Mech Eng 271:86–108

    Article  MathSciNet  MATH  Google Scholar 

  67. Idesman AV, Pham D (2014) Accurate finite element modeling of acoustic waves. Comput Phys Commun 185:2034–2045

    Article  MathSciNet  MATH  Google Scholar 

  68. Ainsworth M, Wajid HA (2010) Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM J Numer Anal 48(1):346–371

    Article  MathSciNet  MATH  Google Scholar 

  69. Wang D, Liu W, Zhang H (2013) Novel higher order mass matrices for isogeometric structural vibration analysis. Comput Methods Appl Mech Eng 260:92–108

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang D, Liu W, Zhang H (2015) Superconvergent isogeometric free vibration analysis of Euler–Bernoulli beams and kirchhoff plates with new higher order mass matrices. Comput Methods Appl Mech Eng 286:230–267

    Article  MathSciNet  MATH  Google Scholar 

  71. Puzyrev V, Deng Q, Calo V (2017) Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes. Comput Methods Appl Mech Eng 320:421–443

    Article  MathSciNet  Google Scholar 

  72. Wang D, Liang Q, Wu J (2017) A quadrature-based superconvergent isogeometric frequency analysis with macro-integration cells and quadratic splines. Comput Methods Appl Mech Eng 320:712–744

    Article  MathSciNet  Google Scholar 

  73. Idesman A, Dey B (2017) The use of the local truncation error for the increase in accuracy of the linear finite elements for heat transfer problems. Comput Methods Appl Mech Eng 319:52–82

    Article  MathSciNet  Google Scholar 

  74. Idesman A (2017) Optimal reduction of numerical dispersion for wave propagation problems. part 1: application to 1-d isogeometric elements. Comput Methods Appl Mech Eng 317:970–992

    Article  MathSciNet  Google Scholar 

  75. Idesman A, Dey B (2017) Optimal reduction of numerical dispersion for wave propagation problems. part 2: application to 2-d isogeometric elements. Comput Methods Appl Mech Eng 321:235–268

    Article  MathSciNet  Google Scholar 

  76. Idesman A (2018) The use of the local truncation error to improve arbitrary-order finite elements for the linear wave and heat equations. Comput Methods Appl Mech Eng 334:268–312

    Article  MathSciNet  Google Scholar 

  77. Singh K, Williams J (2005) A parallel fictitious domain multigrid preconditioner for the solution of poisson’s equation in complex geometries. Comput Methods Appl Mech Eng 194(45–47):4845–4860

    Article  MATH  Google Scholar 

  78. Vos P, van Loon R, Sherwin S (2008) A comparison of fictitious domain methods appropriate for spectral/hp element discretisations. Comput Methods Appl Mech Eng 197(25–28):2275–2289

    Article  MathSciNet  MATH  Google Scholar 

  79. Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. a stabilized lagrange multiplier method. Comput Methods Appl Mech Eng 199(41–44):2680–2686

    Article  MathSciNet  MATH  Google Scholar 

  80. Rank E, Kollmannsberger S, Sorger C, Duster A (2011) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45–46):3200–3209

    Article  MathSciNet  MATH  Google Scholar 

  81. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Duster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–252:104–115

    Article  MATH  Google Scholar 

  82. Fries T, Omerović S, Schöllhammer D, Steidl J (2017) Higher-order meshing of implicit geometries-part i: integration and interpolation in cut elements. Comput Methods Appl Mech Eng 313:759–784

    Article  MathSciNet  Google Scholar 

  83. Hoang T, Verhoosel CV, Auricchio F, van Brummelen EH, Reali A (2017) Mixed isogeometric finite cell methods for the stokes problem. Comput Methods Appl Mech Eng 316:400–423

    Article  MathSciNet  Google Scholar 

  84. Zhao S, Wei GW (2009) Matched interface and boundary (mib) for the implementation of boundary conditions in high-order central finite differences. Int J Numer Meth Eng 77(12):1690–1730

    Article  MathSciNet  MATH  Google Scholar 

  85. May S, Berger M (2017) An explicit implicit scheme for cut cells in embedded boundary meshes. J Sci Comput 71(3):919–943

    Article  MathSciNet  MATH  Google Scholar 

  86. Kreisst H-O, Petersson NA (2006) An embedded boundary method for the wave equation with discontinuous coefficients. SIAM J Sci Comput 28(6):2054–2074

    Article  MathSciNet  MATH  Google Scholar 

  87. Kreiss H-O, Petersson NA (2006) A second order accurate embedded boundary method for the wave equation with dirichlet data. SIAM J Sci Comput 27(4):1141–1167

    Article  MathSciNet  MATH  Google Scholar 

  88. Kreiss H-O, Petersson NA, Ystrom J (2004) Difference approximations of the neumann problem for the second order wave equation. SIAM J Numer Anal 42(3):1292–1323

    Article  MathSciNet  MATH  Google Scholar 

  89. Jomaa Z, Macaskill C (2010) The shortley-weller embedded finite-difference method for the 3d poisson equation with mixed boundary conditions. J Comput Phys 229(10):3675–3690

    Article  MathSciNet  MATH  Google Scholar 

  90. Jomaa Z, Macaskill C (2005) The embedded finite difference method for the poisson equation in a domain with an irregular boundary and dirichlet boundary conditions. J Comput Phys 202(2):488–506

    Article  MathSciNet  MATH  Google Scholar 

  91. Jl H Jr, Wang L, Sifakis E, Teran JM (2012) A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions. J Comput Phys 231(4):2015–2048

    Article  MathSciNet  MATH  Google Scholar 

  92. Chen L, Wei H, Wen M (2017) An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J Comput Phys 334:327–348

    Article  MathSciNet  MATH  Google Scholar 

  93. Bedrossian J, von Brecht JH, Zhu S, Sifakis E, Teran JM (2010) A second order virtual node method for elliptic problems with interfaces and irregular domains. J Comput Phys 229(18):6405–6426

    Article  MathSciNet  MATH  Google Scholar 

  94. Assêncio DC, Teran JM (2013) A second order virtual node algorithm for stokes flow problems with interfacial forces, discontinuous material properties and irregular domains. J Comput Phys 250:77–105

    Article  MathSciNet  MATH  Google Scholar 

  95. Mattsson K, Almquist M (2017) A high-order accurate embedded boundary method for first order hyperbolic equations. J Comput Phys 334:255–279

    Article  MathSciNet  MATH  Google Scholar 

  96. Schwartz P, Barad M, Colella P, Ligocki T (2006) A cartesian grid embedded boundary method for the heat equation and poisson’s equation in three dimensions. J Comput Phys 211(2):531–550

    Article  MathSciNet  MATH  Google Scholar 

  97. Dakin G, Despres B, Jaouen S (2018) Inverse lax-wendroff boundary treatment for compressible lagrange-remap hydrodynamics on cartesian grids. J Comput Phys 353:228–257

    Article  MathSciNet  MATH  Google Scholar 

  98. Colella P, Graves DT, Keen BJ, Modiano D (2006) A cartesian grid embedded boundary method for hyperbolic conservation laws. J Comput Phys 211(1):347–366

    Article  MathSciNet  MATH  Google Scholar 

  99. Crockett R, Colella P, Graves D (2011) A cartesian grid embedded boundary method for solving the poisson and heat equations with discontinuous coefficients in three dimensions. J Comput Phys 230(7):2451–2469

    Article  MathSciNet  MATH  Google Scholar 

  100. McCorquodale P, Colella P, Johansen H (2001) A cartesian grid embedded boundary method for the heat equation on irregular domains. J Comput Phys 173(2):620–635

    Article  MathSciNet  MATH  Google Scholar 

  101. Johansen H, Colella P (1998) A cartesian grid embedded boundary method for poisson’s equation on irregular domains. J Comput Phys 147(1):60–85

    Article  MathSciNet  MATH  Google Scholar 

  102. Angel JB, Banks JW, Henshaw WD (2018) High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form. J Comput Phys 352:534–567

    Article  MathSciNet  MATH  Google Scholar 

  103. Uddin H, Kramer R, Pantano C (2014) A cartesian-based embedded geometry technique with adaptive high-order finite differences for compressible flow around complex geometries. J Comput Phys 262:379–407

    Article  MathSciNet  MATH  Google Scholar 

  104. Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. part i: poisson and stokes problems. J Comput Phys 372:972

    Article  MathSciNet  MATH  Google Scholar 

  105. Song T, Main A, Scovazzi G, Ricchiuto M (2018) The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows. J Comput Phys 369:45–79

    Article  MathSciNet  MATH  Google Scholar 

  106. Hosseinverdi S, Fasel HF (2018) An efficient, high-order method for solving poisson equation for immersed boundaries: combination of compact difference and multiscale multigrid methods. J Comput Phys 374:912–940

    Article  MathSciNet  MATH  Google Scholar 

  107. Idesman A, Dey B (2019) A new 3-d numerical approach to the solution of pdes with optimal accuracy on irregular domains and cartesian meshes. Comput Methods Appl Mech Eng 354:568–592

    Article  MathSciNet  Google Scholar 

  108. Idesman A, Dey B (2019) Compact high-order stencils with optimal accuracy for numerical solutions of 2-d time-independent elasticity equations. Comput Methods Appl Mech Eng, pp 1–17 (accepted)

Download references

Acknowledgements

The research has been supported in part by the NSF Grant CMMI-1935452 and by Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Idesman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendices

Appendix A: The coefficients \(b_p\) used in Eq. (10) in Sect. 2.1.

The first five coefficients \(b_p\) (\(p=1,2,\ldots ,5\)) used in Eq. (10) are presented below. All coefficients \(b_p\) used these formulas are given in the attached file ’b-coeff-1.pdf’

Eq. (10):

$$\begin{aligned} b_{1}= & {} {k_1}+{k_2}+{k_3}+{k_4}+{k_5}+{k_6}+{k_7}+{k_8}+{k_9} \\ b_{2}= & {} -{d_1} {k_1}+{d_3} {k_3}-{d_4} {k_4}+{d_5} {k_6}-{d_6} {k_7}+{d_8} {k_9} \\ b_{3}= & {} {b_y} (-{d_1} {k_1}-{d_2} {k_2}-{d_3} {k_3}+{d_6} {k_7}+{d_7} {k_8}+{d_8} {k_9}) \\ b_{4}= & {} -\frac{{d_1}^2 {k_1}}{2}-\frac{{d_3}^2 {k_3}}{2}-\frac{{d_4}^2 {k_4}}{2}-\frac{{d_5}^2 {k_6}}{2}-\frac{{d_6}^2 {k_7}}{2}\\&-\frac{{d_8}^2 {k_9}}{2}+{m_1}+{m_2}+{m_3}\\&+\,{m_4}+{m_5}+{m_6}+{m_7}+{m_8}+{m_9} \\ b_{5}= & {} {b_y} ({d_1}^2 {k_1}-{d_3}^2 {k_3}-{d_6}^2 {k_7}+{d_8}^2 {k_9}) \\ \end{aligned}$$

Appendix B: The coefficients \(b_p\) used in Eq. (10) for the Neumann boundary conditions in Sect. 2.2.

The first five coefficients \(b_p\) (\(p=1,2,\ldots ,5\)) used in Eq. (10) are presented below. All coefficients \(b_p\) used these formulas are given in the attached file ’b-coeff-2.pdf’

Eq. (10):

$$\begin{aligned} b_{1}= & {} k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+k_{7}+k_{8}+k_{9} \\ b_{2}= & {} -\,d_{1} k_{1}+d_{3} k_{3}-d_{4} k_{4}+d_{6} k_{6}-d_{7} k_{7}+d_{9} k_{9}\\&+\,\bar{k}_{1} n_{11}+\bar{k}_{2} n_{12}+\bar{k}_{3} n_{13}+\bar{k}_{4} n_{14}\\&+\,\bar{k}_{5} n_{15}+\bar{k}_{6} n_{16}+\bar{k}_{7} n_{17}+\bar{k}_{8} n_{18}\\&+\,\bar{k}_{9} n_{19} \\ b_{3}= & {} {b_y} (-d_{1} k_{1}-d_{2} k_{2}-d_{3} k_{3}+d_{7} k_{7}+d_{8} k_{8}\\&+\,d_{9} k_{9})+\bar{k}_{1} n_{21}+\bar{k}_{2} n_{22}+\bar{k}_{3} n_{23}\\&+\,\bar{k}_{4} n_{24}+\bar{k}_{5} n_{25}+\bar{k}_{6} n_{26}+\bar{k}_{7} n_{27}\\&+\,\bar{k}_{8} n_{28}+\bar{k}_{9} n_{29} \\ b_{4}= & {} -\frac{d_{1}^2 k_{1}}{2}+d_{1} \bar{k}_{1} n_{11}-\frac{d_{3}^2 k_{3}}{2}\\&-\,d_{3} \bar{k}_{3} n_{13}-\frac{d_{4}^2 k_{4}}{2}\\&+\,d_{4} \bar{k}_{4} n_{14}-\frac{d_{6}^2 k_{6}}{2}-d_{6} \bar{k}_{6} n_{16}\\&-\,\frac{d_{7}^2 k_{7}}{2}+d_{7} \bar{k}_{7} n_{17}-\frac{d_{9}^2 k_{9}}{2}\\&-\,d_{9} \bar{k}_{9} n_{19}+m_{1}+m_{2}\\&+\,m_{3}+m_{4}+m_{5}+m_{6}+m_{7}+m_{8}+m_{9} \\ b_{5}= & {} {b_y} (d_{1}^2 k_{1}-d_{1} \bar{k}_{1} n_{11}-d_{2} \bar{k}_{2} n_{12}-d_{3}^2 k_{3}\\&-\,d_{3} \bar{k}_{3} n_{13}-d_{7}^2 k_{7}+d_{7} \bar{k}_{7} n_{17}+d_{8} \bar{k}_{8} n_{18}\\&+\,d_{9}^2 k_{9}+d_{9} \bar{k}_{9} n_{19})-d_{1} \bar{k}_{1} n_{21}+d_{3} \bar{k}_{3} n_{23}\\&-\,d_{4} \bar{k}_{4} n_{24}+d_{6} \bar{k}_{6} n_{26}-d_{7} \bar{k}_{7} n_{27}\\&+\,d_{9} \bar{k}_{9} n_{29} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idesman, A., Dey, B. A new numerical approach to the solution of the 2-D Helmholtz equation with optimal accuracy on irregular domains and Cartesian meshes. Comput Mech 65, 1189–1204 (2020). https://doi.org/10.1007/s00466-020-01814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01814-4

Keywords

Navigation