Skip to main content
Log in

Time-varying formation dynamics modeling and constrained trajectory optimization of multi-quadrotor UAVs

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The formation of multi-quadrotor UAVs (QUAVs) in long flights will encounter many constraints and obstacles in the flight process, so it is necessary to change the formation shape to avoid these constraints. When the flight path of QUAVs is individually optimized, multiple individual dynamic problems will be faced, making the solution complicated and spending a long time. In this paper, as a whole instead of individuals considering the QUAVs, the formation is regarded as a rigid body using the Voronoi graph theory method in the flight process. The constraints of the followed QUAVs are transformed into the constraints of leader QUAV. Therefore, the formation is transformed for different constraints by changing the virtual rigid body structure or shape. A time-varying model is established to facilitate the use of optimization. The energy consumption of the leader UAV within the specified time is minimized as the trajectory optimization objective. The optimization improvement of the end heading and height constraints is proposed. A trajectory optimization method for the leader QUAV based on Gauss pseudospectral method is proposed, transforming the original optimal control problem into the nonlinear programming one. The simulation results demonstrate and verify the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Hafez, A.T., Kamel, M.A.: Cooperative task assignment and trajectory planning of unmanned systems via HFLC and PSO. Unmanned Syst. 7(2), 65–81 (2019)

    Article  Google Scholar 

  2. Qi, G., Huang, D.: Modeling and dynamical analysis of a small-scale unmanned helicopter. Nonlinear Dyn. 98(3), 2131–2145 (2019)

    Article  Google Scholar 

  3. Manyam, G.S., Rathinam, S., Casbeer, D., et al.: Tightly bounding the shortest Dubins paths through a sequence of points. J. Intell. Rob. Syst. 88, 495–511 (2017)

    Article  Google Scholar 

  4. Ropero, F., Munoz, P., R-Moreno, M.D.: A path planning algorithm for cooperative UGV–UAV exploration. Eng. Appl. Artif. Intell. 78(1), 260–272 (2019)

    Article  Google Scholar 

  5. Liu, C., Mcaree, O., Chen, W.H.: Path-following control for small fixed-wing unmanned aerial vehicles under wind disturbances. Int. J. Robust Nonlinear Control 23(15), 1682–1698 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Radmanesh, M., Kumar, M., Guentert, P.H., et al.: Overview of path planning and obstacle avoidance algorithms for UAVs: a comparative study. Unmanned Syst. 6(2), 1–24 (2018)

    Google Scholar 

  7. Chen, Y., Yu, J., Su, X., et al.: Path planning for multi-UAV formation. J. Intell. Rob. Syst. 77, 229–246 (2015)

    Article  Google Scholar 

  8. Ergezer, H., Leblebicioglu, K.: 3D Path planning for multiple UAVs for maximum information collection. J. Intell. Rob. Syst. 73, 737–762 (2014)

    Article  Google Scholar 

  9. Zhou, S., Qi, Y., Zhang, L., et al.: Time-varying formation control of UAV swarm systems with switching topologies. Acta Aeronaut. Astronaut. Sin. 38(4), 259–267 (2017). (in Chinese)

    Google Scholar 

  10. Nigam, N., Bieniawski, S., Kroo, I., et al.: Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20(5), 1236–1251 (2012)

    Article  Google Scholar 

  11. Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive formation flight with quadrotors. Auton. Robot. 33(1–2), 143–156 (2012)

    Article  Google Scholar 

  12. Turpin M., Michael N., Kumar V.: Decentralized formation control with variable shapes for aerial robots. In Proceeding conference of 2012 IEEE international conference on robotics and automation, Saint Paul, MN, 23–30 (2012)

  13. Shanmugavel, M., Tsourdos, A., White, B., et al.: Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs. Control. Eng. Pract. 18(9), 1084–1092 (2010)

    Article  Google Scholar 

  14. Brintaki, A.N., Nikolos, I.K.: Coordinated UAV path planning using differential evolution. Oper. Res. Int. J. 5(3), 487–502 (2005)

    Article  Google Scholar 

  15. Besada-Portas, E., Dela, T.L., De la, C.J.M., et al.: Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 26(4), 619–634 (2010)

    Article  Google Scholar 

  16. Radmanesh, R., Kumar, M., French, D., et al.: Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace. Aerosp. Sci. Technol. 105, 105965 (2020)

    Article  Google Scholar 

  17. Chen, Y., Yu, J., Su, X., et al.: Path planning for multi-UAV formation. J. Intell. Rob. Syst. 77(1), 229–246 (2015)

    Article  Google Scholar 

  18. Altan A., Aslan Ö., Hacıoğlu R.: Real-time control based on NARX neural network of hexarotor UAV with load transporting system for path tracking. In 6th international conference on control engineering & information technology (CEIT), 25–27 October 2018, Istanbul, Turkey, (2018)

  19. Altan, A., Hacıog, R.: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances. Mech. Syst. Signal Process. 138, 106548 (2020)

    Article  Google Scholar 

  20. Belge, E., Kaba, H., Parlak, A., Altan, A., et al.: Estimation of small unmanned aerial vehicle lateral dynamic model with system identification approaches. Balkan J. Electr. Comput. Eng. (2020). https://doi.org/10.17694/bajece.654499

    Article  Google Scholar 

  21. Zhang, L., Sun, M., Cheng, Q., et al.: Integral performance optimization for the two-stage-to-orbit RBCC-RKT launch vehicle based on GPM. Aeronaut. J. 123(1265), 945–969 (2019)

    Article  Google Scholar 

  22. Yang, S., Cui, T., Hao, X., et al.: Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method. Aerosp. Sci. Technol. 67, 88–95 (2017)

    Article  Google Scholar 

  23. Zhuang, J., Zhang, Q., Zhang, J., et al.: Flat trajectory optimization of tilt-rotor aircraft based on gauss pseudospectral method. J. Phys. Conf. Ser. 1624(4), 042033 (2020)

    Article  Google Scholar 

  24. Bellahcene, Z., Bouhamida, M., Denai, M., et al.: Adaptive neural network-based robust H∞ tracking control of a quadrotor UAV under wind disturbances. Int. J. Autom. Control 15(1), 28 (2021)

    Article  Google Scholar 

  25. Bi, H., Qi, G., Hu, J., et al.: Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle. Chaos Solitons Fractals 138, 109815 (2020)

    Article  MathSciNet  Google Scholar 

  26. Bi, H., Qi, G., Hu, J.: Modeling and analysis of chaos and bifurcations for the attitude system of a quadrotor unmanned aerial vehicle. Complexity 2019, 1–17 (2019)

    Article  Google Scholar 

  27. Farid G., Mo H., Ahmed M. I., et al.: On control law partitioning for nonlinear control of a quadrotor UAV. In Proceeding conference of international bhurban conference on applied and science & technology, Islamabad, Pakistan, 257–262 (2018)

  28. Liu, Y., Chen, C., Wu, H., et al.: Structural stability analysis and optimization of the quadrotor unmanned aerial vehicles via the concept of Lyapunov exponents. Int. J. Adv. Manuf. Technol. 94, 3217–3227 (2018)

    Article  Google Scholar 

  29. Omürlü, V.E., Ahin, U.B., Artar, R., et al.: An experimental stationary quadrotor with variable DOF. Sadhana. Acad. Proc. Eng. Sci. 38(2), 247–264 (2013)

    Google Scholar 

  30. Du, H., Zhu, W., Wen, G., et al.: Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE Trans. Cybern. (2017). https://doi.org/10.1109/TCYB.2017.2777463

    Article  Google Scholar 

  31. Kolaric, P., Chen, C., Dalal, A., et al.: Consensus controller for multi-UAV navigation. Control Theory Technol. 16(2), 110–121 (2018)

    Article  MathSciNet  Google Scholar 

  32. Dong, X., Yu, B., Shi, Z., et al.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2014)

    Article  Google Scholar 

  33. Wei, G., Jun, T., Liang, B., et al.: Time synergistic optimal efficiency model for formation transformation of multiple UAVs. Acta Aeronaut. Astronaut. Sin. 40(6), 322599.1-322609 (2019). (in Chinese)

    Google Scholar 

  34. Zhang, L., Sun, M., Chen, Z., et al.: Trajectory planning with determinate impact angle and time constraints based on pseudospectral method. J. Balls 25(3), 1-5+12 (2013). ((in Chinese)

    Google Scholar 

  35. Huntington, G.T.: Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems. Massachusetts Institute of Technology, Boston (2007)

    Google Scholar 

  36. Zhang, L., Gao, H., Chen, Z., et al.: Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method. Nonlinear Dyn. 72(3), 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  37. Huntington, G.T., Rao, A.V.: Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. J. Guid. Control. Dyn. 31(3), 689–698 (2012)

    Article  Google Scholar 

  38. Chen, Q., Wang, X., Yang, J.: Optimal path-following guidance with generalized weighting functions based on indirect Gauss pseudospectral method. Math. Probl. Eng. 2018(PT.10), 3104397.1-3104397.17 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Xiao, L., Lv, L., Liu, P., et al.: A novel adaptive Gauss pseudospectral method for nonlinear optimal control of constrained hypersonic re-entry vehicle problem. Int. J. Adapt. Control Signal Process. 32(9), 1243–1258 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., et al.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man Cybern. Part B Cybern. A Pub IEEE Syst. Man Cybern. Soc. 33(6), 898–912 (2003)

    Article  Google Scholar 

  41. Zhang, Y., Yang, X., Zhou, W., et al.: Study of three-dimensional on-line path planning for UAV based on pythagorean hodograph curve. Int. J. Smart Sens. Intell. Syst. 8(3), 1641–1666 (2015)

    Google Scholar 

  42. Zhang, D., Duan, H.: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning. Neurocomputing 313(3), 229–246 (2018)

    Google Scholar 

  43. Sun, P., Shan, R.: Predictive control with velocity observer for cushion robot based on PSO for path planning. J. Syst. Sci. Complex. 33(4), 988–1011 (2020)

    Article  MathSciNet  Google Scholar 

  44. Masehian, E., Sedighizadeh, D.: Multi-objective PSO and NPSO-based algorithms for robot path planning. Adv. Electr. Comput. Eng. 10(4), 69–76 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61873186) and the Key R&D and Promotion Projects (tackling of key scientific and technical problems) in Henan Province, China (No. 212102210497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qi, G. & Zhang, L. Time-varying formation dynamics modeling and constrained trajectory optimization of multi-quadrotor UAVs. Nonlinear Dyn 106, 3265–3284 (2021). https://doi.org/10.1007/s11071-021-06788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06788-3

Keywords

Navigation