Skip to main content
Log in

Delay-induced Hopf and double Hopf-bifurcation in plankton system with dormancy of predators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we propose a model for plankton dynamics in presence of dormancy and time delay. Dormancy is a better adaptive strategy to survive in a harsh environmental condition than active ones. The dormancy in zooplankton receives considerable interest as it reduces the environmental stress and helps to regulate the predator’s life cycle. The density of phytoplankton is affected by gestation delay and the density of zooplankton is benefited by the adaptation of dormant phase (such as resting eggs). The interaction between the phytoplankton and zooplankton is taken as Beddington–DeAngelis (B-D)-type functional response. The feasibility and boundedness criterion of the considered model system are proved by the comparison principle. We have discussed the stability and direction of bifurcating periodic solution by applying the normal form theory and center manifold arguments. Computational illustrations are executed to support analytical findings by plotting the bifurcation diagram, time evolution plot and phase portraits for biologically feasible parameter values. Our numerical results revealed that the system depicts chaotic attractor as the magnitude of feedback time delay beyond the threshold value but the system behavior may become stable for some parametric values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Jäger, W., Krömker, S., Tang, B.: Quiescence and transient growth dynamics in chemostat models. Math. Biosci. 119, 225–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Malik, T., Smith, H.L.: A resource-based model of microbial quiescence. J. Math. Biol. 53, 231–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hadeler, K.P.: Quiescent phases and stability. Lin. Alg. Appl. 428, 1620–1627 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hadeler, K.P., Hillen, Y.: Coupled dynamics and quiescent states. Math everywhere. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. De Stasio, B.T.: The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35, 1079–1090 (1990)

    Article  Google Scholar 

  6. Cohen, D., Levin, S.A.: The interaction between dispersal and dormancy strategies in varying and heterogeneous environments. In: Teramoto, E., Yamaguchi, M. (eds.) Mathematical topics in population biology, morphogenesis and neurosciences. In: Proceedings, Kyoto 1985. Lecture Notes in Biomath, vol. 71, pp. 110–122. Springer (1987)

  7. Geiser, F., Turbill, C.: Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96, 1235–1240 (2009)

    Article  Google Scholar 

  8. Danks, H.V.: Insect dormancy: an ecological perspective, vol. 1. Biological Survey of Canada (Terrestrial Arthropods), Ottawa (1987)

    Google Scholar 

  9. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  10. Kirk, K.L.: Enrichment can stabilize population dynamics: autotoxins and density dependence. Ecol. Soc. Am. 79, 2456–2462 (1998)

    Google Scholar 

  11. Holyoak, M.: Effects of nutrient enrichment on predator-prey metapopulation dynamics. J. Anim. Ecol. 69, 985–997 (2000)

    Article  Google Scholar 

  12. Kuwamura, M., Nakazawa, T.: Dormancy of predators dependent on the rate of variation in prey density. SIAM J. Appl. Math. 71, 169–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alekseev, V., Lampert, W.: Maternal control of resting-egg production in Dapnia. Nature 414, 899–901 (2001)

    Article  Google Scholar 

  14. McCauley, E., Nisbet, R.M., Murdoch, W.W., de Roos, A.M., Gurney, W.S.C.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999)

    Article  Google Scholar 

  15. Gyllström, M., Hansson, L.A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295 (2004)

    Article  Google Scholar 

  16. Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos Interdiscip. J. Nonlinear Sci. 19, 0431212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abrams, P.A., Walters, C.J.: Invulnerable prey and the paradox of enrichment. Ecology 77, 1125–1133 (1996)

    Article  Google Scholar 

  19. Bilinsky, L., Hadeler, K.: Quiescence stabilizes predator-prey relations. J. Biol. Dyn. 3, 196–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thakur, N.K., Ojha, A.: Complex plankton dynamics induced by adaptation and defense. Model. Earth Sys. Environ. 6, 907–916 (2020)

    Article  Google Scholar 

  21. Alekseev, V., Lampert, W.: Maternal control of resting-egg production in Daphnia. Nature 414, 899 (2001)

    Article  Google Scholar 

  22. Hairston, J.R., Nelson, G., Hansen, A.M., Schaffner, W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biol. 45, 133–145 (2000)

    Article  Google Scholar 

  23. Ricci, C.: Dormancy patterns in rotifers. Hydrobiologia 446, 1–11 (2001)

    Article  Google Scholar 

  24. Tan, Z.X., Koh, J.M., Koonin, E.V., Cheong, K.H.: Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7, 1901559 (2020)

    Article  Google Scholar 

  25. Kubrak, O.I., Kucerova, L., Theopold, U., Nylin, S., Nässel, D.R.: Characterization of reproductive dormancy in male Drosophila melanogaster. Front. Physiol. 7, 572 (2016)

    Article  Google Scholar 

  26. Wang, J., Jiang, W.: Impulsive perturbations in a predator-prey model with dormancy of predators. Appl. Math. Model. 38, 2533–2542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheong, K.H., Tan, Z.X., Xie, N.G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  29. Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the Parrondo effect across biology. BoiEssays 41, 1900027 (2019)

    Article  Google Scholar 

  30. Yang, Y.: Hopf bifurcation in a two-competitor, one-prey system with time delay. Appl. Math. Comput. 214, 228–235 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  32. Rehim, M., Imran, M.: Dynamical analysis of a delay model of phytoplankton-zooplankton interaction. Appl. Math. Model. 36, 638–647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuang, Y.: Delay differential equations with applications in population dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  34. Mukherjee, D., Ray, S., Sinha, D.: Bifurcation analysis of a detritus based ecosystem with time delay. J. Biol. Syst. 8, 255–261 (2000)

    Article  MATH  Google Scholar 

  35. Das, K., Ray, S.: Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system. Ecol. Model. 215, 69–76 (2008)

    Article  Google Scholar 

  36. Jana, D., Agrawal, R., Upadhyay, R.K.: Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos Solitons Fractals 69, 50–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thakur, N.K., Srivastava, S.C., Ojha, A.: Dynamical study of an eco-epidemiological delay model for plankton system with toxicity. Iran. J. Sci. Technol. Trans. Sci. 45, 283–304 (2021)

    Article  MathSciNet  Google Scholar 

  38. Kumar, A., Srivastava, P.K., Yadav, A.: Delayed information induces oscillations in a dynamical model for infectious disease. Int. J. Biomath. 12, 1950020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ojha, A., Thakur, N.K.: Exploring the complexity and chaotic behavior in plankton-fish system with mutual interference and time delay. BioSystems 198, 104283 (2020)

    Article  Google Scholar 

  40. Agrawal, R., Jana, D., Upadhyay, R.K., Rao, V.S.H.: Complex dynamics of sexually reproductive generalist predator and gestation delay in a food chain model: double Hopf-bifurcation to Chaos. J. Appl. Math. Comput. 55, 513–547 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Thakur, N.K., Ojha, A.: Complex dynamics of delay-induced plankton-fish interaction exhibiting defense. SN Appl. Sci. 2, 1–25 (2020)

    Article  Google Scholar 

  42. Sharma, A., Sharma, A.K., Agnihotri, K.: The dynamic of plankton-nutrient interaction with delay. Appl. Math. Comput. 231, 503–515 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Pal, S., Chatterjee, A.: Dynamics of the interaction of plankton and planktivorous fish with delay. Cogent Math. 2, 1074337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pal, N., Samanta, S., Biswas, S., Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with delay. Int. J. Bifurcat. Chaos 25, 1550123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ruan, S.: On nonlinear dynamics of predator-prey models with discrete delay. Math Model. Nat. Phenom. 4, 140–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao, Y., Chen, L.: Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thakur, N.K., Ojha, A., Jana, D., Upadhyay, R.K.: Modeling the plankton fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dyn. 100, 4003–4029 (2020)

    Article  Google Scholar 

  48. Upadhyay, R.K., Thakur, N.K., Rai, V.: Diffusion-driven instabilities and spatio-temporal patterns in an aquatic predator-prey system with beddington-deangelis type functional response. Int. J. Bifurcat. Chaos 21, 663–684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tripathi, J.P., Jana, D., Tiwari, V.: A Beddington-DeAngelis type one-predator two-prey competitive system with help. Nonlinear Dyn. 94, 553–573 (2018)

    Article  MATH  Google Scholar 

  50. Li, H., Meng, G., She, Z.: Stability and Hopf bifurcation of a delayed density-dependent predator-prey system with Beddington-DeAngelis functional response. Int. J. Bifurcat. Chaos 26, 1650165 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator-prey model with dormancy of predators. Nonlinear Dyn. 69, 1541–1558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Agrawal, R., Jana, D., Upadhyay, R.K., Sree Hari Rao, V.: Dynamic relationship between the mutual interference and gestation delay of a hybrid tritrophic food chain model. ANZIAM J. 59, 370–401 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Letellier, C., Aziz-Alaoui, M.: Analysis of the dynamics of a realistic ecological model. Chaos Solitons Fractals 13, 95–107 (2002)

    Article  MATH  Google Scholar 

  54. Hale, J.: Theory of functional differential equations. Spring-Verleg, New York (1977)

    Book  MATH  Google Scholar 

  55. Ruan, S., Wei, J.: On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. Appl. Med. Biol. 18, 41–52 (2001)

    Article  MATH  Google Scholar 

  56. Li, M.Y., Shu, H.: Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection. Bull. Math. Biol. 73, 1774–1793 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hassard, B.D., Kazarinoff, N.D., Wan, Y.W.: Theory and applications of Hopf bifurcation, vol. 41. CUP Archive, Cambridge (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

This research work is supported by Science and Engineering Research Board (SERB), Govt. of India under the Grant No. EMR/2017/000607 to the corresponding author (Nilesh Kumar Thakur).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Kumar Thakur.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, A., Thakur, N.K. Delay-induced Hopf and double Hopf-bifurcation in plankton system with dormancy of predators. Nonlinear Dyn 105, 997–1018 (2021). https://doi.org/10.1007/s11071-021-06617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06617-7

Keywords

Navigation