Skip to main content
Log in

Complex plankton dynamics induced by adaptation and defense

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

In this paper, we investigate a model for phytoplankton–zooplankton interaction and incorporated the adaptation (dormancy of the predators such as resting eggs) and defense. The dormant stage is the better equipment to withstand unpleasant environmental conditions than active ones. The ability to defense from predator attack is an important trait shaping prey population dynamics. We study how (i) adaptations allow an organism to be successful in a particular harsh environment, (ii) toxin spread surrounding the water surface provide a defense? Analytically, we study the local stability condition of the model system. To understand the effect of adaptation and defense on plankton dynamics, we have plotted the bifurcation diagram, time series and spatiotemporal pattern. Our numerical investigation reveals that the adaptation can suppress the fluctuation in population density and system shows a transient complex spatiotemporal pattern which is either a mixture of spatially periodic steady states or traveling/standing waves by increasing the time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews JF (1968) A mathematical model for the continuous culture of macroorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10(6):707–723

    Article  Google Scholar 

  • Arnold DE (1971) Ingestion, assimilation, survival, and reproduction by daphnia pulex fed seven species of blue-green algae 1, 2. Limnol Oceanogr 16(6):906–920

    Article  Google Scholar 

  • Bhattacharyya J, Pal S (2016) Algae-herbivore interactions with Allee effect and chemical defense. Ecoll Complex 27:48–62

    Article  Google Scholar 

  • Chattopadhyay J, Chatterjee S, Venturino E (2008) Patchy agglomeration as a transition from monospecies to recurrent plankton blooms. J Theor Biol 253(2):289–295

    Article  Google Scholar 

  • DeMott WR, Moxter F (1991) Foraging cyanobacteria by copepods: responses to chemical defense and resource abundance. Ecology 72(5):1820–1834

    Article  Google Scholar 

  • Dugatkin LA (1997) Cooperation among animals:an evolutionary perspective. Oxford University Press, New York

    Google Scholar 

  • Ghanbari B, Kumar S, Kumar R (2020) A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133:109619

    Article  Google Scholar 

  • Goufo EFD, Kumar S, Mugisha SB (2020) Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 130:109467

    Article  Google Scholar 

  • Han R, Dai B (2019) Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect. Nonlinear Anal Real World Appl 45:822–853

    Article  Google Scholar 

  • Kumar S, Kumar A, Odibat ZM (2017) A nonlinear fractional model to describe the population dynamics of two interacting species. Math Methods Appl Sci 40(11):4134–4148

    Article  Google Scholar 

  • Kumar S, Nisar KS, Kumar R, Cattani C, Samet B (2020a) A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. Math Methods Appl Sci. https://doi.org/10.1002/mma.6208

    Article  Google Scholar 

  • Kumar S, Kumar R, Singh J, Nisar KS, Kumar D (2020b) An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. Alexandria Eng J. https://doi.org/10.1016/j.aej.2019.12.046

    Article  Google Scholar 

  • Kuwamura M (2015) Turing instabilities in prey-predator systems with dormancy of predators. J Math Biol 71(1):125–149

    Article  Google Scholar 

  • Kuwamura M, Chiba H (2009) Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos Interdiscip J Nonlinear Sci 19(4):043121

    Article  Google Scholar 

  • Kuwamura M, Nakazawa T, Ogawa T (2009) A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J Math Biol 58(3):459–479

    Article  Google Scholar 

  • Lampert W (1981) Inhibitory and toxic effects of blue-green algae on daphnia. Internationale Revue der gesamten Hydrobiologie und Hydrographie 66(3):285–298

    Article  Google Scholar 

  • Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491(1–3):221–239

    Article  Google Scholar 

  • Lui Y (2007) Geometrical criteria for non-existence of cycles in predator–prey system with group defense. Math Biosci 208:193–204

    Article  Google Scholar 

  • Muller MN, Mitani JC (2005) Conflict and co-operation in wild life chimpanzees. Adv Study Behav 35:275–331

    Article  Google Scholar 

  • Pal R, Basu D, Banerjee M (2009) Modelling of phytoplankton allelopathy with Monod–Haldane-type functional response—a mathematical study. Biosystems 95(3):243–253

    Article  Google Scholar 

  • Pančić M, Kiørboe T (2018) Phytoplankton defence mechanisms: traits and trade-offs. Biol Rev 93(2):1269–1303

    Article  Google Scholar 

  • Raw SN, Mishra P (2019) Modeling and analysis of inhibitory effect in plankton-fish model: application to the hypertrophic Swarzedzkie Lake in Western Poland. Nonlinear Anal Real World Appl 46:465–492

    Article  Google Scholar 

  • Scheffer M (1998) London Ecology of shallow lakes, vol 357. Chapman & Hall London, London

    Google Scholar 

  • Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37(3):545–559

    Article  Google Scholar 

  • Smayda TJ, Shimizu Y (eds) (1993) Toxic phytoplankton blooms in the sea. Developmental marine biology, vol 3. Elsevier Science Publications, New York

    Google Scholar 

  • Sokol W, Howell JA (1981) Kinetics of phenol oxidation by washed cell. Biotechnol Bioeng 3(9):2039–2049

    Article  Google Scholar 

  • Steele JH, Henderson EW (1981) A simple plankton model. Am Nat 117(5):676–691

    Article  Google Scholar 

  • Upadhyay RK, Wang W, Thakur NK (2010) Spatiotemporal dynamics in a spatial plankton system. Math Model Nat Phenom 5(5):102–122

    Article  Google Scholar 

  • Upadhyay RK, Thakur NK, Rai V (2011) Diffusion-driven instabilities and spatio-temporal patterns in an aquatic predator–prey system with Beddington–DeAngelis type functional response. Int J Bifurc Chaos 21(03):663–684

    Article  Google Scholar 

  • Van Donk E, Ianora A, Vos M (2011) Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668(1):3–19

    Article  Google Scholar 

  • Vilar JMG, Solé RV, Rubí JM (2003) On the origin of plankton patchiness. Phys A Stat Mech Appl 317(1–2):239–246

    Article  Google Scholar 

  • Wang J, Jiang W (2012) Bifurcation and chaos of a delayed predator–prey model with dormancy of predators. Nonlinear Dyn 69(4):1541–1558

    Article  Google Scholar 

  • Watanabe MF, Park HD, Watanabe M (1994) To Compositions of Microcystis species and heptapeptide toxins. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 25(4):2226–2229

    Google Scholar 

  • Xu C, Yuan S, Zhang T (2016) Global dynamics of a predator–prey model with defense mechanism for prey. Appl Math Lett 62:42–48

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by Science and Engineering Research Board (SERB), Govt. of India, under the Grant No. EMR/2017/000607 to the corresponding author (Nilesh Kumar Thakur).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Kumar Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, N.K., Ojha, A. Complex plankton dynamics induced by adaptation and defense. Model. Earth Syst. Environ. 6, 907–916 (2020). https://doi.org/10.1007/s40808-020-00727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-020-00727-8

Keywords

Navigation