Skip to main content
Log in

A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, a mathematical model of a prey-predator system is proposed to resolve the paradox of enrichment in ecosystems. The model is based on the natural strategy that a predator takes, i.e, it produces resting eggs in harsh environment. Our result gives a criterion for a functional response, which ensures that entering dormancy stabilizes the population dynamics. It is also shown that the hatching of resting eggs can stabilize the population dynamics when the switching between non-resting and resting eggs is sharp. Furthermore, the bifurcation structure of our model suggests the simultaneous existence of a stable equilibrium and a large amplitude cycle in natural enriched environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams P.A., Walters C.J.: Invulnerable prey and the paradox of enrichment. Ecology 77, 1125–1133 (1996)

    Article  Google Scholar 

  2. Alekseev V., Lampert W.: Maternal control of resting-egg production in Dapnia. Nature 414, 899–901 (2001)

    Article  Google Scholar 

  3. Carvalho G.R., Hughes R.N.: Effect of food availability, female culture-density and photoperiod on ephippia production in Daphnia magna Strauss (Crustacea: Cladocera). Freshw. Biol. 13, 37–46 (1983)

    Article  Google Scholar 

  4. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Paffenroth, R.C., Sandstede, B., Wang, X.: AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with HomCont) (2000)

  5. Ei S.-I., Kuwamura M., Morita Y.: A variational approach to singular perturbation problems in reaction-diffusion systems. Physica D 207, 171–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Genkai-Kato M., Yamamura N.: Unpalatable prey resolves the paradox of enrichment. Proc. R. Soc. Lond. B. 266, 1215–1219 (1999)

    Article  Google Scholar 

  7. Genkai-Kato M., Yamamura N.: Profitability of prey determines the response of population abundances to enrichment. Proc. R. Soc. Lond. B. 267, 2397–2401 (2000)

    Article  Google Scholar 

  8. Grover J.P.: Competition, herbivory and enrichment: nutrient-based model for edible and inedible plants. Am. Nat. 145, 746–774 (1995)

    Article  Google Scholar 

  9. Gyllström M., Hansson L.-A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295 (2004)

    Article  Google Scholar 

  10. Henry D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Note in Mathematics, vol. 840. Springer, Heidelberg (1981)

    Google Scholar 

  11. Hairston N.G. Jr, Hansen A.M., Schaffner W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45, 133–145 (2000)

    Article  Google Scholar 

  12. Hairston N.G. Jr, Van Brunt R.A., Kearns C.M.: Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76, 1706–1711 (1995)

    Article  Google Scholar 

  13. Holyoak M.: Effects of nutrient enrichment on prey-predator metapopulation dynamics. J. Anim. Ecol. 69, 985–997 (2000)

    Article  Google Scholar 

  14. Jansen V.A.A.: Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment. Oikos 74, 384–390 (1995)

    Article  Google Scholar 

  15. Jensen C.X.J., Ginzburg L.R.: Paradox or theoretical failures? The jury is still out. Ecol. Model. 188, 3–14 (2005)

    Article  Google Scholar 

  16. Kirk K.L.: Enrichment can stabilize population dynamics: autotoxins and density dependence. Ecology 79, 2456–2462 (1998)

    Google Scholar 

  17. Kuznetsov Y.A.: Elements of Applied Bifurcation Theory (3rd edition). Springer, Heidelberg (2004)

    Google Scholar 

  18. McAllister C.D., Lebrasseur R.J., Parsons T.R., Rosenzweig M.L.: Stability of enriched aquatic ecosystems. Science 175, 562–565 (1972)

    Article  Google Scholar 

  19. McCauley E., Murdoch W.W.: Predator-prey dynamics in environments rich and poor in nutrients. Nature 343, 455–457 (1990)

    Article  Google Scholar 

  20. McCauley E., Nisbet R.M., Murdoch W.W., de Roos A.M., Gurney W.S.C.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999)

    Article  Google Scholar 

  21. Murdoch W.W., Nisbet R.M., McCauley E., de Roos A.M., Gurney W.S.C.: Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79, 1339–1356 (1998)

    Article  Google Scholar 

  22. Nakazawa, T., Kuwamura, M., Shimoda, M.: A mathematical model of prey-predator system with dormancy of predators (in Japanese). In: Proceedings of RIMS Kyoto University (Sūrikaisekikenkyūsho Kōkyūroku), vol. 1556, pp. 123–130 (2007)

  23. Nakazawa, T., Kuwamura, M., Yamamura, N.: Resting eggs of zooplankton and the pradox of enrichment, submitted

  24. Nilsson P.A., Nyström P., Romare P., Tranvik L.: Effects of enrichment on simple aquatic food webs. Am. Nat. 157, 654–669 (2001)

    Article  Google Scholar 

  25. Petrovskii S., Li B.-L., Malchow H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complexity 1, 37–47 (2004)

    Article  Google Scholar 

  26. Ricci C.: Dormancy patterns in rorifers. Hydrobiologia 446, 1–11 (2001)

    Article  Google Scholar 

  27. Rinaldi S., Muratori S., Kuznetsov Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed prey-predator communities. Bull. Math. Biol. 55, 15–35 (1993)

    MATH  Google Scholar 

  28. Rosenzweig M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  29. Rosenzweig M.L., MacArthur R.H.: Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 47, 209–223 (1963)

    Article  Google Scholar 

  30. Scheffer M., de Boer R.J.: Implications of spatial heterogenety for the paradox of enrichment. Ecology 76, 2270–2277 (1995)

    Article  Google Scholar 

  31. Vos M., Kooi B.W., DeAngelis D.L., Mooij W.M.: Inducible defences and the paradox of enrichment. Oikos 105, 471–480 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kuwamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwamura, M., Nakazawa, T. & Ogawa, T. A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009). https://doi.org/10.1007/s00285-008-0203-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0203-1

Keywords

Mathematics Subject Classification (2000)

Navigation