Skip to main content
Log in

Stability of fractional-order systems with Prabhakar derivatives

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fractional derivatives of Prabhakar type are capturing an increasing interest since their ability to describe anomalous relaxation phenomena (in dielectrics and other fields) showing a simultaneous nonlocal and nonlinear behaviour. In this paper we study the asymptotic stability of systems of differential equations with the Prabhakar derivative, providing an exact characterization of the corresponding stability region. Asymptotic expansions (for small and large arguments) of the solution of linear differential equations of Prabhakar type and a numerical method for nonlinear systems are derived. Numerical experiments are hence presented to validate theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alidousti, J.: Stability region of fractional differential systems with Prabhakar derivative. J. Appl. Math. Comput. 62(1–2), 135–155 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bia, P., Caratelli, D., Mescia, L., Cicchetti, R., Maione, G., Prudenzano, F.: A novel FDTD formulation based on fractional derivatives for dispersive Havriliak–Negami media. Signal Process. 107, 312–318 (2015)

    Article  Google Scholar 

  3. Brunner, H.: Volterra Integral Equations: An Introduction to Theory and Applications, vol. 30. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  4. Causley, M., Petropoulos, P.: On the time-domain response of Havriliak–Negami dielectrics. IEEE Trans. Antennas Propag. 61(6), 3182–3189 (2013)

    Article  MathSciNet  Google Scholar 

  5. Colombaro, I., Giusti, A., Vitali, S.: Storage and dissipation of energy in prabhakar viscoelasticity. Mathematics 6(2), 15 (2018)

    Article  Google Scholar 

  6. Derakhshan, M.H., Ahmadi Darani, M., Ansari, A., Khoshsiar Ghaziani, R.: On asymptotic stability of Prabhakar fractional differential systems. Comput. Methods Differ. Equ. 4(4), 276–284 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer-Verlag, Berlin Heidelberg (1974)

    Book  Google Scholar 

  8. D’Ovidio, M., Polito, F.: Fractional diffusion–telegraph equations and their associated stochastic solutions. Theory Probab. Appl. 62(4), 552–574 (2018). [Note: appeared as an arXiv preprint, arXiv:1307.1696, in 2013]

  9. Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag–Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018)

    Article  MathSciNet  Google Scholar 

  10. Garra, R., Gorenflo, R., Polito, F., Tomovski, Ž.: Hilfer–Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Garrappa, R.: Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016)

    Article  MathSciNet  Google Scholar 

  12. Garrappa, R., Mainardi, F., Maione, G.: Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)

    Article  MathSciNet  Google Scholar 

  13. Garrappa, R., Maione, G.: Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. Lect. Notes Electr. Eng. 407, 429–439 (2017)

    Article  Google Scholar 

  14. Giusti, A.: A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93(3), 1757–1763 (2018)

    Article  Google Scholar 

  15. Giusti, A.: General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 83, 105114 (2020)

    Article  MathSciNet  Google Scholar 

  16. Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)

    Article  MathSciNet  Google Scholar 

  17. Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., Mainardi, F.: A practical guide to prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23(1), 9–54 (2020)

    Article  MathSciNet  Google Scholar 

  18. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag–Leffler Functions. Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014)

    MATH  Google Scholar 

  19. Górska, K., Horzela, A., Pogány, T.K.: A note on the article “Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel” [Z. Angew. Math. Phys. (2019) 70: 42]. Z. Angew. Math. Phys. 70(5), Paper No. 141, 6 (2019)

  20. Gripenberg, G., Londen, S.O., Staffans, O.: Volterra Integral and Functional Equations, vol. 34. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  21. Havriliak, S., Negami, S.: A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J. Polym. Sci. C 14, 99–117 (1966)

    Article  Google Scholar 

  22. Khamzin, A., Nigmatullin, R., Popov, I.: Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism. Fract. Calc. Appl. Anal. 17(1), 247–258 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kilbas, A.A., Saigo, M., Saxena, R.K.: Solution of Volterra integrodifferential equations with generalized Mittag–Leffler function in the kernels. J. Integral Equ. Appl. 14(4), 377–396 (2002)

    Article  MathSciNet  Google Scholar 

  24. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  25. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011)

    Article  MathSciNet  Google Scholar 

  26. Lubich, C.: A stability analysis of convolution quadratures for Abel–Volterra integral equations. IMA J. Numer. Anal. 6(1), 87–101 (1986)

    Article  MathSciNet  Google Scholar 

  27. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  28. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988)

    Article  MathSciNet  Google Scholar 

  29. Lubich, C.: Convolution quadrature revisited. BIT 44(3), 503–514 (2004)

    Article  MathSciNet  Google Scholar 

  30. Machado, J.A.T.: Matrix fractional systems. Commun. Nonlinear Sci. Numer. Simul. 25(1–3), 10–18 (2015)

    Article  Google Scholar 

  31. Mainardi, F., Garrappa, R.: On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293, 70–80 (2015)

    Article  MathSciNet  Google Scholar 

  32. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, pp. 963–968 (1996)

  33. Miskinis, P.: The Havriliak–Negami susceptibility as a nonlinear and nonlocal process. Phys. Scr. 2009(T136), 014019 (2009)

    Article  Google Scholar 

  34. Paris, R.B.: Exponentially small expansions in the asymptotics of the Wright function. J. Comput. Appl. Math. 234(2), 488–504 (2010)

    Article  MathSciNet  Google Scholar 

  35. Paris, R.B.: Asymptotics of the special functions of fractional calculus. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, Vol. 1, pp. 297–325. De Gruyter, Berlin (2019)

  36. Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19(1), 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Sandev, T.: Generalized langevin equation and the Prabhakar derivative. Mathematics 5(4), 66 (2017)

    Article  Google Scholar 

  38. Stephanovich, V., Glinchuk, M., B, Hilczer, Kirichenko, E.: Physical mechanisms responsible for the relaxation time distribution in disordered dielectrics. Phys. Solid State+ 44(5), 946–952 (2002)

    Article  Google Scholar 

  39. Tomovski, Ž., Pogány, T., Srivastava, H.M.: Laplace type integral expressions for a certain three-parameter family of generalized Mittag–Leffler functions with applications involving complete monotonicity. J. Frankl. Inst. 351(12), 5437–5454 (2014)

    Article  MathSciNet  Google Scholar 

  40. Tsalyuk, Z.: Volterra integral equations. J. Sov. Math. 12(6), 715–758 (1979)

    Article  Google Scholar 

  41. Zhao, D., Sun, H.: Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel. Z. Angew. Math. Phys. 70(2), Paper No. 42 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kaslik.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was funded by the COST Action CA 15225 - “Fractional-order systems- analysis, synthesis and their importance for future design”. The work of R. Garrappa was also partially supported by a GNCS-INdAM 2020 Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrappa, R., Kaslik, E. Stability of fractional-order systems with Prabhakar derivatives. Nonlinear Dyn 102, 567–578 (2020). https://doi.org/10.1007/s11071-020-05897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05897-9

Keywords

Mathematics Subject Classification

Navigation